
RIVERBANK ESTATE

LOT 1008 WATERSIDE ESPLANADE CABOOLTURE SOUTH STAGE 19B

FOR PEET CABOOLTURE SYNDICATE LTD

EXISTING LOTS LOT 1007 SP295486 LOT 1008 SP295506 PROPOSED NO. OF LOTS: 32

LOT INFORMATION

PLEASE REFER TO WOLTER CONSULTING GROUP AS CONSTRUCTED PROJECT FOR STAGE 19B FINAL CONSTRUCTED

AS CONSTRUCTED DETAILS I CERTIFY ON BEHALF OF CALIBRE
CONSULTING THAT THE "AS CONSTRUCTED"
DETAILS SHOWN ON THIS PLAN ARE A TRUE
AND ACCURATE RECORD OF THE WORKS, ATE 20-05-2020 DANIEL COLLINS RPEG 18631

DRAWING INDEX

DRAWING NO.

COVER SHEET, LOCALITY PLAN AND DRAWING INDEX

BULK EARTHWORKS

201

BULK EARTHWORKS LAYOUT PLAN BUILK FARTHWORKS SECTIONS

202 TEMPORARY SWALE LONGITUDINAL SECTION

203 COMPENSATORY EARTHWORKS LAYOUT PLAN

ROADWORKS

SURVEY SETOUT LAYOUT PLAN AND SETOUT TABLES

ROADWORKS LAYOUT PLAN

INTERSECTION DETAILS PLAN AND SETOUT TABLES AD 60 LONGITUDINAL AND CROSS SECTIONS

ROAD 64 CONGITUDINAL AND CROSS SECTIONS ROAD 62 LONGITUDINAL AND CROSS SECTIONS

SIGNS AND LINEMARKING LAYOUT PLAN

DRAINAGE

STORMWATER DRAINAGE LAYOUT PLAN 401 STORMWATER DRAINAGE CATCHMENT PLAN

STORMWATER DRAINAGE LONGITUDINAL SECTIONS 402 STORMWATER DRAINAGE CALCULATIONS SHEET

SEWER RETICULATION

SEWER RETICULATION COVER SHEET SEWER RETICULATION LAYOUT PLAN

SEWER RETICULATION LONGITUDINAL SECTIONS SHEET 1 OF 2

WATER RETICULATION

WATER RETICULATION COVER SHEET WATER RETICULATION LAYOUT PLAN

FROSION AND SEDIMENT PLAN

SEDIMENT AND EROSION LAYOUT PLAN SEDIMENT AND EROSION DETAILS

LOCALITY PLAN

CONSTRUCTION NOTE

THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH:

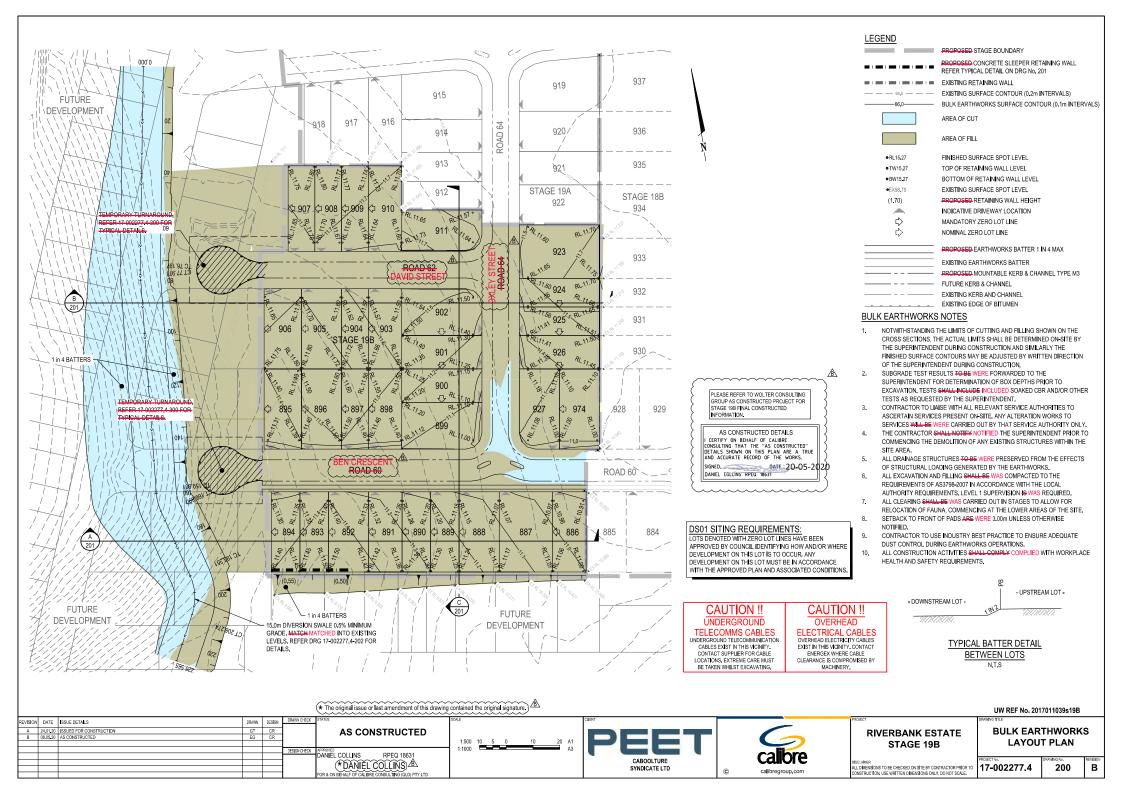
SEDIMENT AND EROSION HAZARD ASSESSMENT (PREPARED BY SOIL SURVEYS)

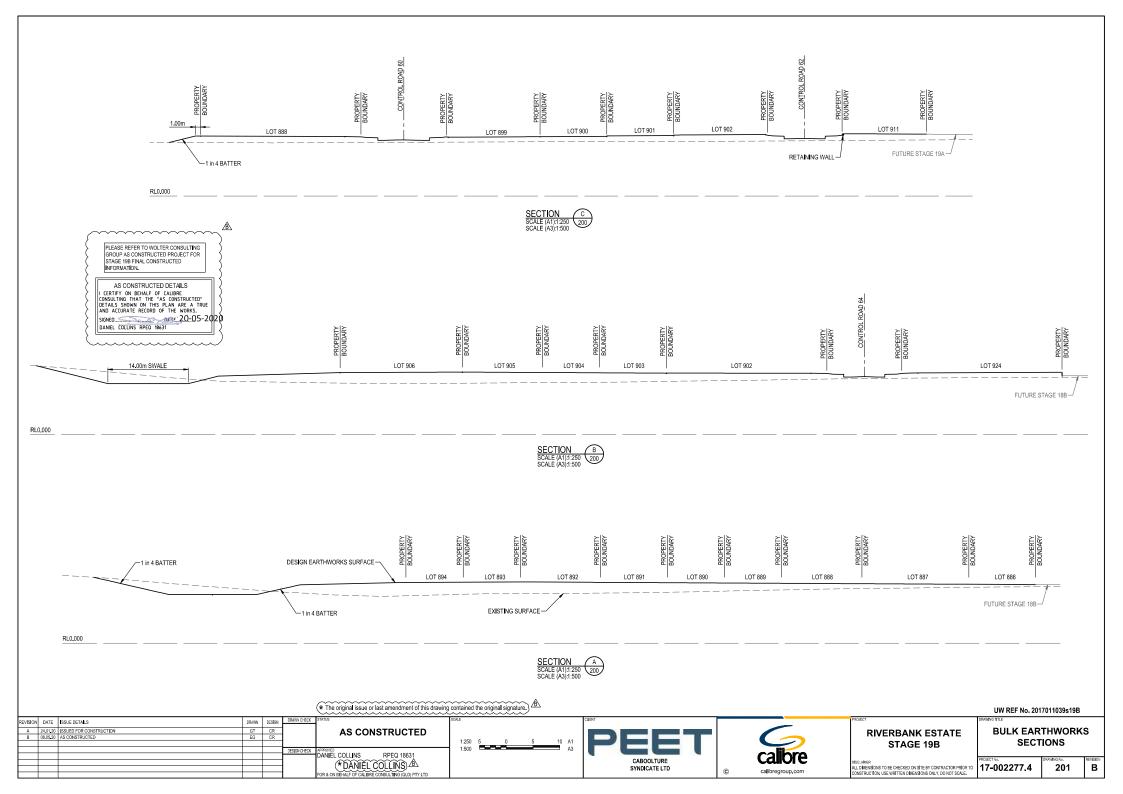
.. ACID SULPHATES SOILS REPORT (PREPARED BY SOIL SURVEYS)

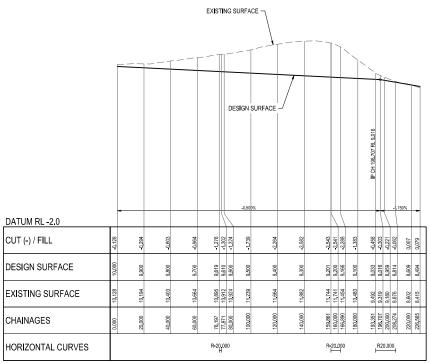
GEOTECHNICAL REPORT (PREPARED BY SOIL SURVEYS)

VEGETATION MANAGEMENT PLAN (VMP) (PREPARED BY SAUNDERS HAVILL GROUP) ENVIRONMENTAL MANAGEMENT PLAN (EMP) (PREPARED BY SAUNDERS HAVILL GROUP

CONSTRUCTION HOLD POINT

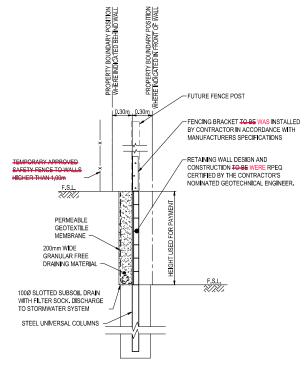

ONCE THE BASE OF MANHOLES, INSPECTION PITS, GULLIES AND FIELD INLETS FOR STORMWATER DRAINAGE AND SEWER RETICULATION HAVE BEEN WERE POURED, FURTHER CONSTRUCTION SHALL DID NOT PROCEED UNTIL THE SUPERINTENDENT AND OR ENGINEER HAVE INSPECTED THE WORKS FOR FINISHED LEVELS AND APPROVED CONSTRUCTION TO


CONSTRUCTION HOLD POINT PRIOR TO CONSTRUCTION THE CONTRACTOR SHALL VERIFY VERIFIED LEVELS OF ALL EXISTING CROSSINGS AND CONNECTION POINTS.


RIVERBANK ESTATE

M.B.R.C. REF No. DA/34784/2017/V3RL 17-002277.4 AS 08.05.20 000

CONSTRUCTED



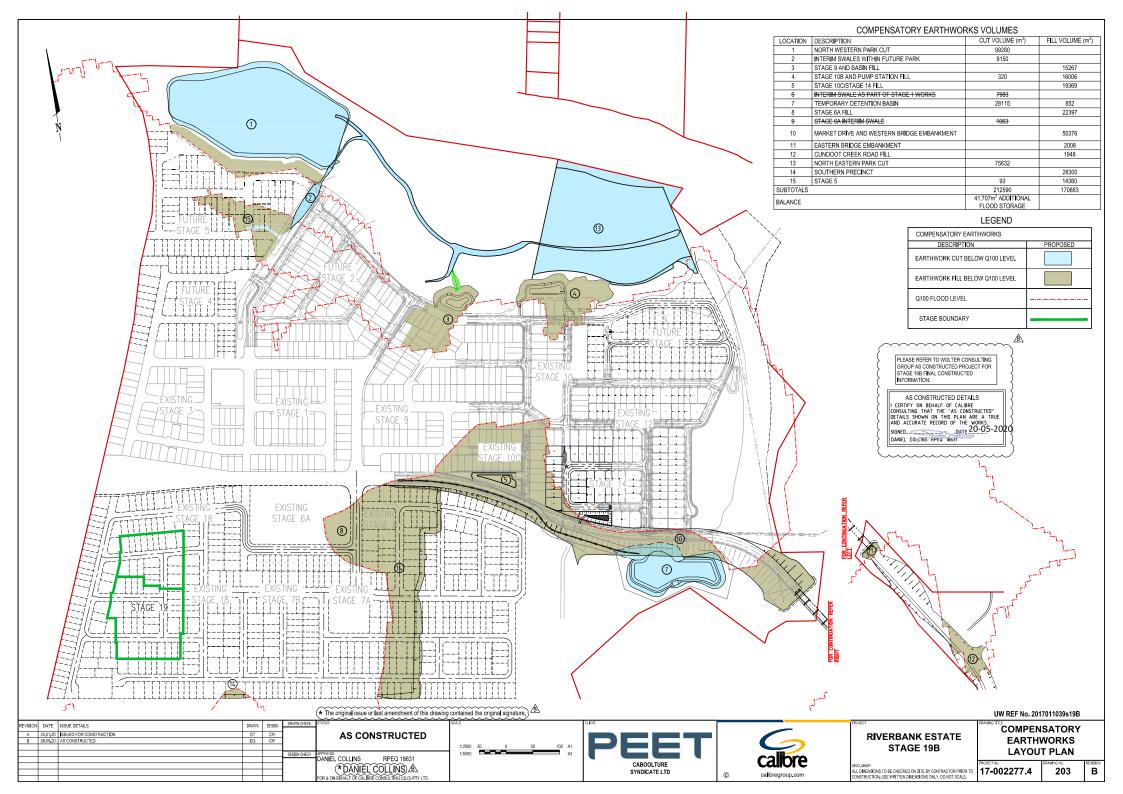
TEMP SWALE SOUTH - LONGITUDINAL SECTION

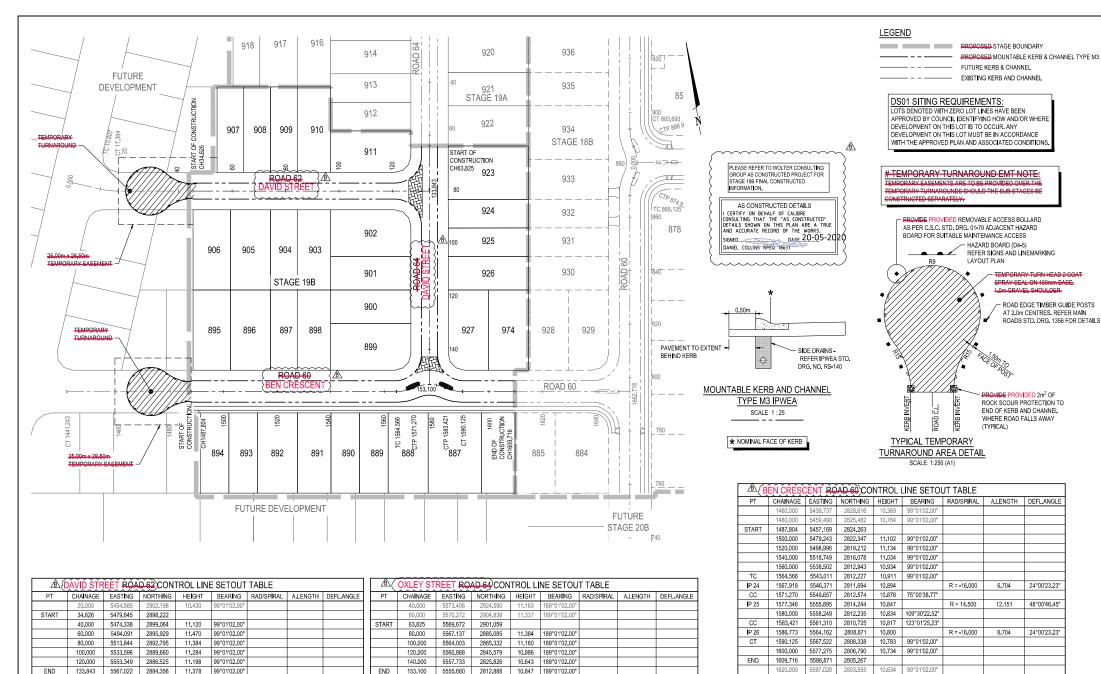
HORIZ SCALE: 1000 VERTICAL SCALE: 100

TYPICAL CONCRETE SLEEPER RETAINING WALL DETAIL

NOTES:

1. RETAINING WALLS TO BE WERE CONSTRUCTED TO MANUFACTURERS SPECIFICATIONS. 2. CONTRACTOR TO PROVIDE PROVIDED STRUCTURAL CERTIFICATION FOR RETAINING WALLS DESIGN AND CONSTRUCTION. 3. PROVIDE PROVIDED APPROVED SAFETY FENCE TO ALL WALLS HIGHER THAN 1.0m. 4. ALL RETAINING WALL FOOTINGS TO BE WERE LOCATED A MINIMUM 1.0m HORIZONTALLY CLEAR OF THE ROOFWATER AND SEWER AND SE TAKEN BELOW THE ZONE OF INFLUENCE.


MINIMUM DESIGN REQUIREMENTS


- SURCHARGE LOADING ON BACKFILL : 5KPa - POST AND FOOTING DESIGN TO ALLOW FOR 1.8m HIGH FENCE - MAX 1V:4H SLOPE BEHIND WALL

* The original issue or last amendment of this drawing contained the original signature.

UW	REF	No.	201701	1039s19B	

REVIS	ON DAT	ATE	ISSUE DETAILS	DRAWN	DESIGN	DRAWN CHECK	STATUS	SCALE 1:25 0.25 0 0.25 0.5 0.75 1.0 1.25 A1	CUENT			PROJECT	DRAWING TITLE		
A	24.01	01.20	ISSUED FOR CONSTRUCTION	GT	CR	1	AS CONSTRUCTED	1:50 A3				RIVERBANK ESTATE	TEMPORA	RY SWAL	Ε.
В	08.05	05.20	AS CONSTRUCTED	EG	CR	1	AGGGMGTMGGTEB	1.00							
]		1:1000 10 0 10 20 30 40 50 A1				STAGE 19B	LONGITUDIN	NAL SECT	ION
						DESIGN CHECK	APPROVED	1:2000 A3			III	002 .02			
							DANIEL COLLINS RPEQ 18631	HORIZONTAL	A45001 TUDE		calibre		EBO ECT No.	DDAWNG No.	REVISION
						1	*DANIFI COLLINS\#\	1:100 2 1 0 2 4 A1	CABOOLTURE		Calloi C	DISCLAIVER	47 000077 4		- D
								1:200 A3	SYNDICATE LTD	0	calibregroup.com	ALL DIMENSIONS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO CONSTRUCTION, USE WRITTEN DIMENSIONS ONLY, DO NOT SCALE.	17-002277.4	202	l B
							FOR & ON BEHALF OF CALIBRE CONSULTING (QLD) PTY LTD	VERTICAL		•	calbrogroupicom	CONSTRUCTION, USE WRITTEN DIMENSIONS ONLY, DO NOT SCALE.			

UW REF No. 2017011039s19B

REVISION DATE ISSUEDETAILS DESIGN A 24,01,20 ISSUED FOR CONSTRUCTION AS CONSTRUCTED RPFQ 18631 ANIEL COLLINS (*DANIÈL COLLINS) 🕸

* The original issue or last amendment of this drawing contained the original signature.

1640 000

1652,716

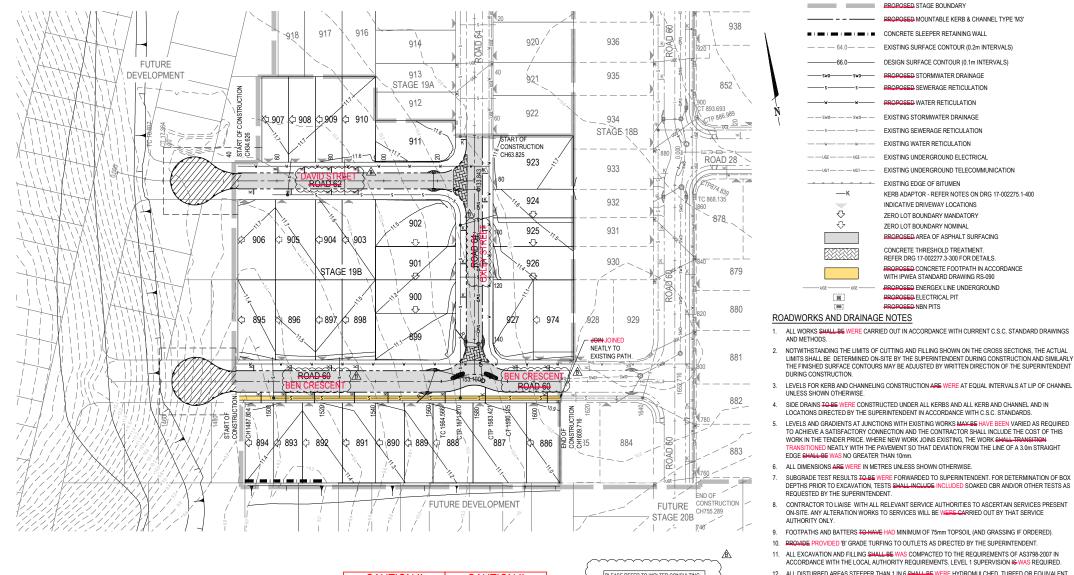
5616 781

2800,521

RIVERBANK ESTATE STAGE 19B

10.568 99°01'02.00'

SURVEY SETOUT LAYOUT PLAN AND **SETOUT TABLES**


SCLAIMER

IL DIMENSIONS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO DISTRUCTION, USE WRITTEN DIMENSIONS ONLY, DO NOT SCALE.

17-002277.4

300

В

EVISION DATE ISSUE DETAILS 24.01.20 ISSUED FOR CONSTRUCTION

NOTWITHSTANDING THAT EXISTING SERVICES MAY OR MAY NOT BE SHOWN ON THE JOB DRAWINGS NO RESPONSIBILITY IS TAKEN BY THE SUPERINTENDENT OR THE PRINCIPAL FOR THIS INFORMATION WHICH HAS BEEN SUPPLIED BY OTHERS. THE DETAILS ARE PROVIDED FOR INFORMATION ONLY. THE CONTRACTOR SHALL ASCERTAIN THE POSITION OF ANY LINDERGROUND SERVICES IN THIS AREA AND SHALL BE RESPONSIBLE FOR MAKING GOOD ANY DAMAGE THERETO.

CAUTION! UNDERGROUND

TELECOMMS CABLES UNDERGROUND TELECOMMUNICATION CABLES EXIST IN THIS VICINITY. CONTACT SUPPLIER FOR CABLE LOCATIONS EXTREME CARE MUST BE TAKEN WHILST EXCAVATING.

AS CONSTRUCTED

CAUTION !! UNDERGROUND

ELECTRICAL CABLES UNDERGROUND ELECTRICITY CABLES EXIST IN THIS VICINITY CONTACT ENERGEX FOR CABLE LOCATIONS EXTREME CARE MUST BE TAKEN WHILST EXCAVATING

PLEASE REFER TO WOLTER CONSULTING GROUP AS CONSTRUCTED PROJECT FOR STAGE 19B FINAL CONSTRUCTED

AS CONSTRUCTED DETAILS CERTIFY ON BEHALF OF CALIBRE CONSULTING THAT THE "AS CONSTRUCTED" DANIEL COLLINS RPEQ 18631

INFORMATION.

DS01 SITING REQUIREMENTS:

ALITHORITY ONLY

LEGEND

—к

 \triangle

♡

36

(m)

AND METHODS.

DURING CONSTRUCTION.

UNI ESS SHOWN OTHERWISE.

EDGE SHALL BE WAS NO GREATER THAN 10mm.

REQUESTED BY THE SUPERINTENDENT

ALL DIMENSIONS ARE WERE IN METRES UNLESS SHOWN OTHERWISE.

PROPOSED STAGE BOUNDARY

CONCRETE SLEEPER RETAINING WALL

PROPOSED STORMWATER DRAINAGE

PROPOSED SEWERAGE RETICULATION

PROPOSED WATER RETICULATION

EXISTING STORMWATER DRAINAGE

EXISTING SEWERAGE RETICULATION

EXISTING UNDERGROUND ELECTRICAL

EXISTING UNDERGROUND TELECOMMUNICATION

KERB ADAPTOR - REFER NOTES ON DRG 17-002275.1-400

EXISTING WATER RETICULATION

EXISTING EDGE OF BITUMEN

INDICATIVE DRIVEWAY LOCATIONS

ZERO LOT BOUNDARY MANDATORY

CONCRETE THRESHOLD TREATMENT. REFER DRG 17-002277 3-300 FOR DETAILS

PROPOSED AREA OF ASPHALT SURFACING

WITH IPWEA STANDARD DRAWING RS-090

PROPOSED ENERGEX LINE LINDERGROUND

PROPOSED CONCRETE FOOTPATH IN ACCORDANCE

ZERO LOT BOUNDARY NOMINAL

PROPOSED ELECTRICAL PIT DDODOSED NRN PITS

LIMITS SHALL BE DETERMINED ON-SITE BY THE SUPERINTENDENT DURING CONSTRUCTION AND SIMILARLY THE FINISHED SURFACE CONTOURS MAY BE ADJUSTED BY WRITTEN DIRECTION OF THE SUPERINTENDENT

LEVELS AND GRADIENTS AT JUNCTIONS WITH EXISTING WORKS MAY BE HAVE BEEN VARIED AS REQUIRED TO ACHIEVE A SATISFACTORY CONNECTION AND THE CONTRACTOR SHALL INCLUDE THE COST OF THIS

SIDE DRAINS TO BE WERE CONSTRUCTED LINDER ALL KERRS AND ALL KERR AND CHANNEL AND IN LOCATIONS DIRECTED BY THE SUPERINTENDENT IN ACCORDANCE WITH C.S.C. STANDARDS

WORK IN THE TENDER PRICE. WHERE NEW WORK JOINS EXISTING, THE WORK SHALL TRANSITION

ON-SITE, ANY ALTERATION WORKS TO SERVICES WILL BE WERE CARRIED OUT BY THAT SERVICE

FOOTPATHS AND BATTERS TO HAVE HAD MINIMUM OF 75mm TOPSOIL (AND GRASSING IF ORDERED).

ACCORDANCE WITH THE LOCAL AUTHORITY REQUIREMENTS. LEVEL 1 SUPERVISION ₩ WAS REQUIRED.

13. ALL CONSTRUCTION ACTIVITIES SHALL COMPLY WITH WORKPLACE HEALTH AND SAFETY REQUIREMENTS.

TRANSITIONED NEATLY WITH THE PAVEMENT SO THAT DEVIATION FROM THE LINE OF A 3.0m STRAIGHT

SUBGRADE TEST RESULTS TO BE WERE FORWARDED TO SUPERINTENDENT. FOR DETERMINATION OF BOX DEPTHS PRIOR TO EXCAVATION, TESTS SHALL INCLUDE INCLUDED SOAKED CBR AND/OR OTHER TESTS AS

PROPOSED MOUNTABLE KERB & CHANNEL TYPE 'M3'

EXISTING SURFACE CONTOUR (0.2m INTERVALS) DESIGN SURFACE CONTOUR (0.1m INTERVALS)

LOTS DENOTED WITH ZERO LOT LINES HAVE BEEN APPROVED BY COUNCIL IDENTIFYING HOW AND/OR WHERE DEVELOPMENT ON THIS LOT IS TO OCCUR. ANY DEVELOPMENT ON THIS LOT MUST BE IN ACCORDANCE WITH THE APPROVED PLAN AND ASSOCIATED CONDITIONS.

ACCESS AND SERVICES TO EXISTING PROPERTIES TO DEMAIN REMAINED AT ALL TIMES

UW REF No. 2017011039s19B

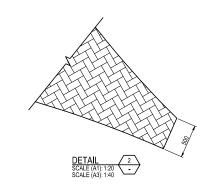
calibregroup.com

RIVERBANK ESTATE STAGE 19B

14. ALL FOOTPATHS ARE TO BE WERE 125mm THICK N32 CONCRETE WITH F72 MESH

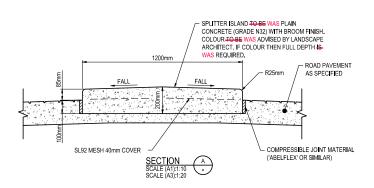
ROADWORKS LAYOUT PLAN

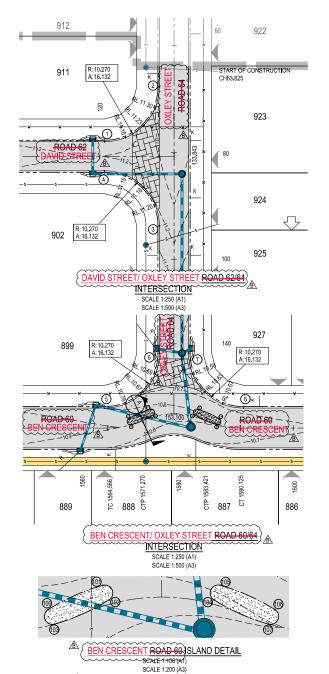
LICIMENSIONS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO


17-002277.4

301

В


09.05.20 AS CONSTRUCTED DANIEL COLLINS RPFQ 18631 *DANIÈL COLLINS)


CABOOLTURE SYNDICATE LTD

TYPICAL INTERSECTION THRESHOLD TREATMENT SCALE 1:100 (A1) SCALE 1:200 (A3)

LEGEND PROPOSED STAGE BOUNDARY PROPOSED STORMWATER DRAINAGE PROPOSED SEWERAGE RETICULATION PROPOSED WATER RETICULATION FUTURE SEWERAGE RETICULATION FUTURE WATER RETICULATION PROPOSED MOUNTABLE KERB & CHANNEL TYPE M3 DESIGN SURFACE CONTOUR (0.1m INTERVALS) PROPOSED AREA OF ASPHALT SURFACING

STAMPED ASPHALT THRESHOLD TREATMENT.

PROPOSED CONCRETE FOOTPATH IN ACCORDANCE WITH IPWEA STANDARD DRAWING RS-090

PAVEMENT SETOUT

Point No.	Easting	Northing	Leve
1	5554.610	2889.089	11.120
2	5566.363	2897.623	11.308
3	5562.288	2871.944	11.164
4	5553.754	2883.697	11.120
5	5543.012	2816.004	10.802
6	5554.765	2824.537	10.558
7	5560.157	2823.682	10.558
8	5568.691	2811.929	10.669

ROAD 60 ISLAND SETOUT

Point No.	Easting	Northing	Level
100	5547.158	2813.296	10.855
101	5551.462	2814.449	10.822
102	5551.769	2813.301	10.857
103	5547.465	2812.148	10.889
104	5559,527	2812.070	10.818
105	5560.175	2813.066	10.782
106	5563.910	2810.638	10.770
107	5563,263	2809.641	10.806

PLEASE REFER TO WOLTER CONSULTING GROUP AS CONSTRUCTED PROJECT FOR STAGE 19B FINAL CONSTRUCTED INFORMATION.

AS CONSTRUCTED DETAILS DANIEL COLLINS RPEQ 18631

(* The original issue or last amendment of this drawing contained the original signature.)

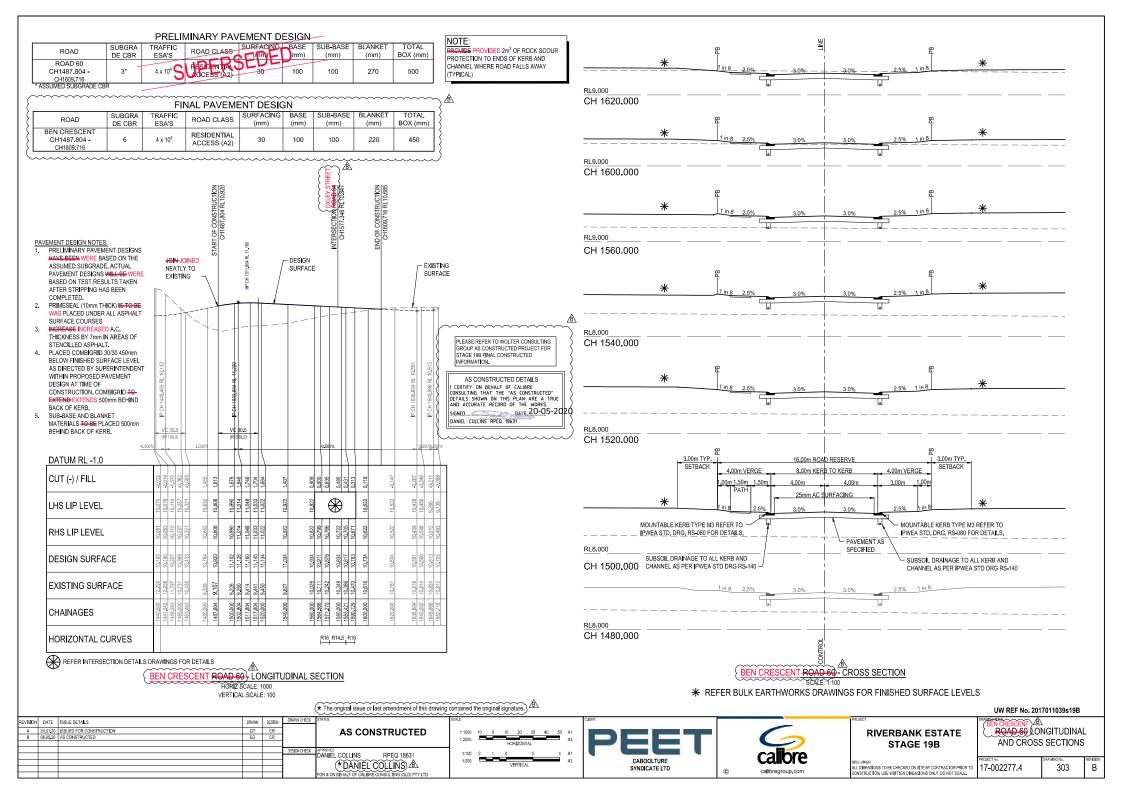
1:250

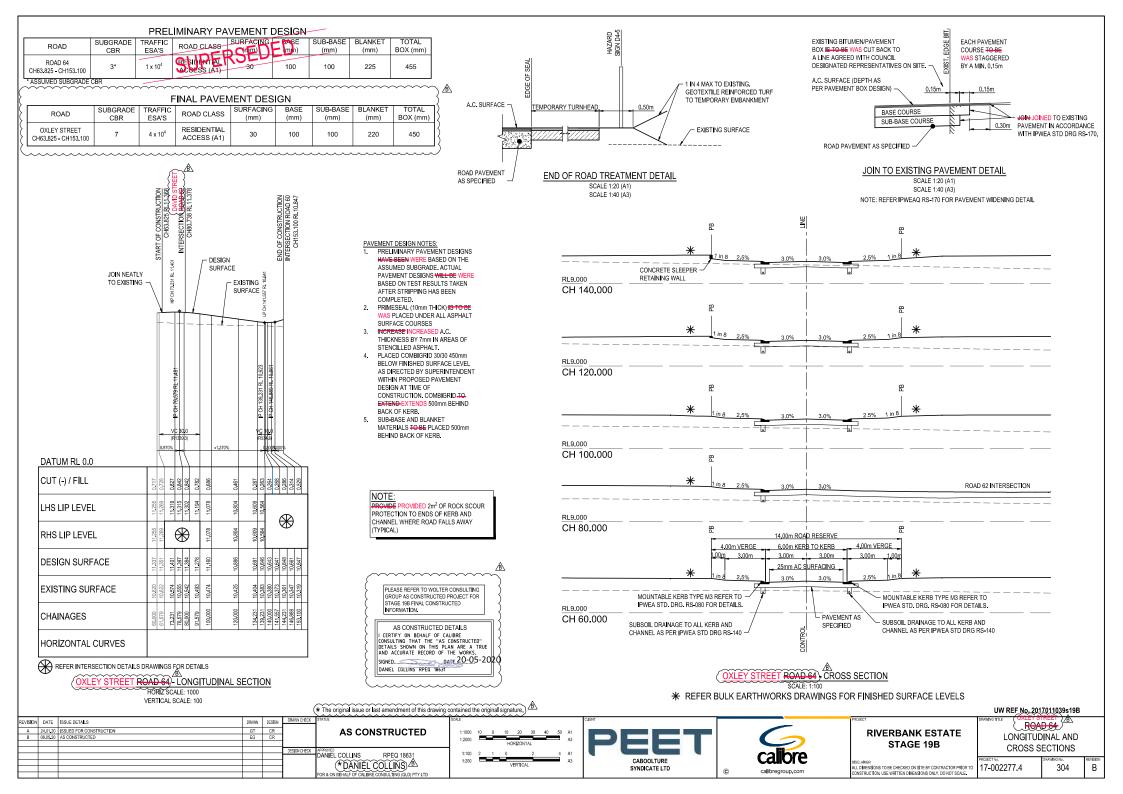
REVISION DATE ISSUE DETAILS nestax **AS CONSTRUCTED** ANIEL COLLINS RPEQ 18631 *DANIEL COLLINS &

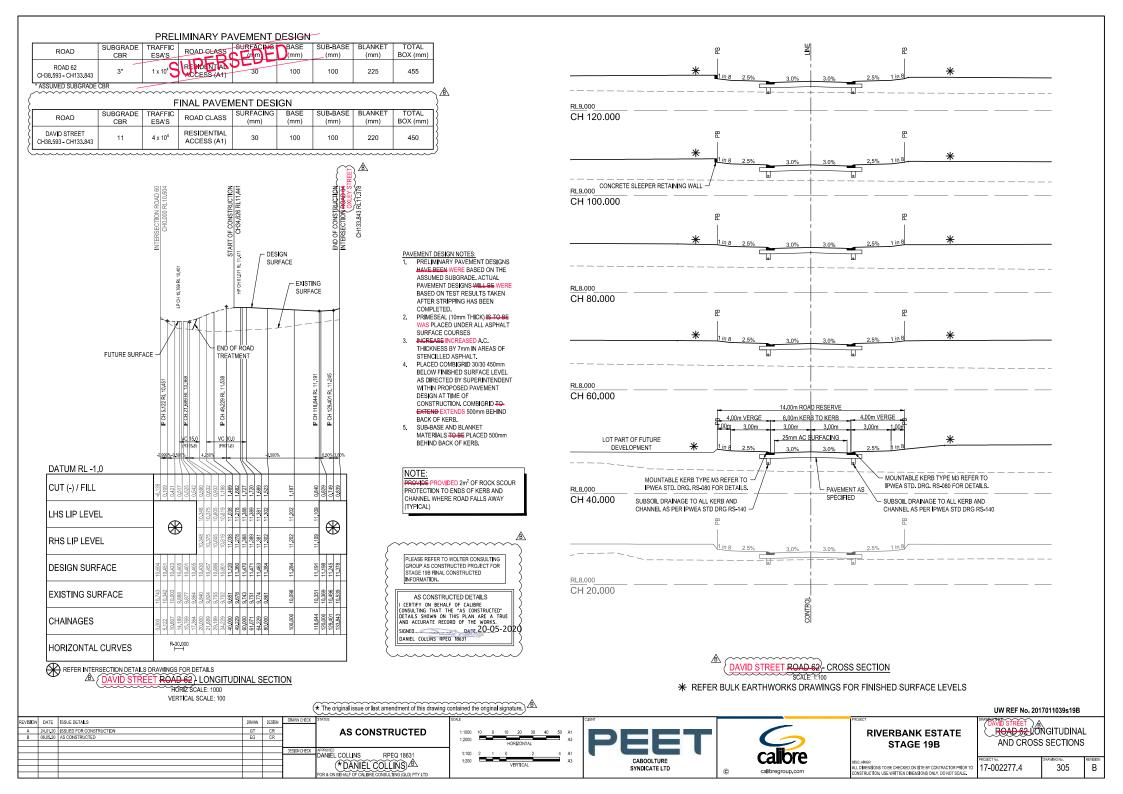
RIVERBANK ESTATE STAGE 19B

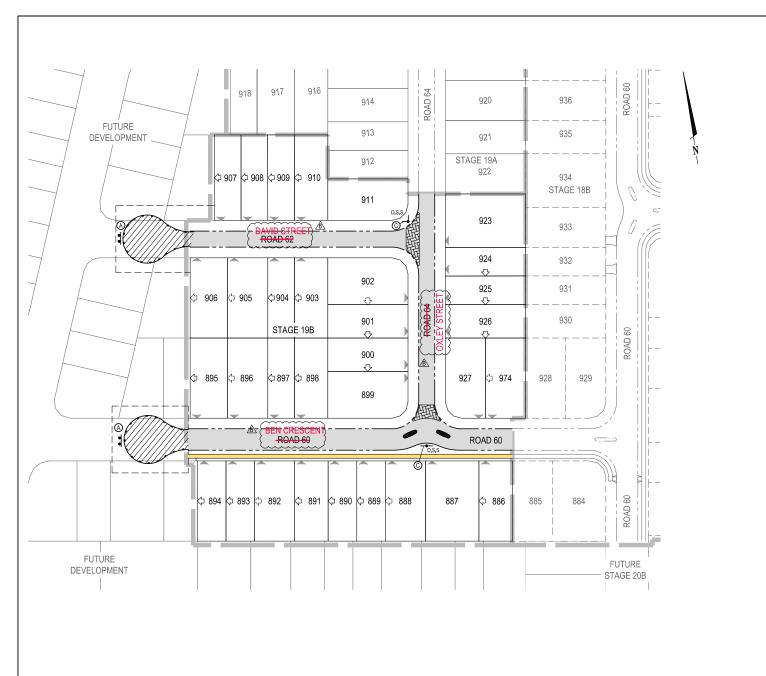
INTERSECTION

ISCLAIMER


ILL DIMENSIONS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO
ONSTRUCTION, USE WRITTEN DIMENSIONS ONLY, DO NOT SCALE.


DETAILS PLAN AND SETOUT TABLES


UW REF No. 2017011039s19B


17-002277.4

302

SIGN LEGEND

s.s

SINGLE STREET NAME SIGN

DSS

DOUBLE STREET NAME SIGN

ROAD SIGN WITH SIGN IDENTIFIER

SIGNS LEGEND

A

NO THROUGH

G5-10 ©

- ALL LINEMARKING AND SIGNS SHALL BE IN WERE ACCORDANCE WITH THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES.
- 2. ALL EXISTING SIGNS AND LINEMARKING TO REMAIN REMAINED U.N.O.
- 3. NOSES OF ALL ISLANDS SHALL BE WERE PAINTED WITH WHITE RETROREFLECTIVE

PLEASE REFER TO WOLTER CONSULTING GROUP AS CONSTRUCTED PROJECT FOR STAGE 19B FINAL CONSTRUCTED

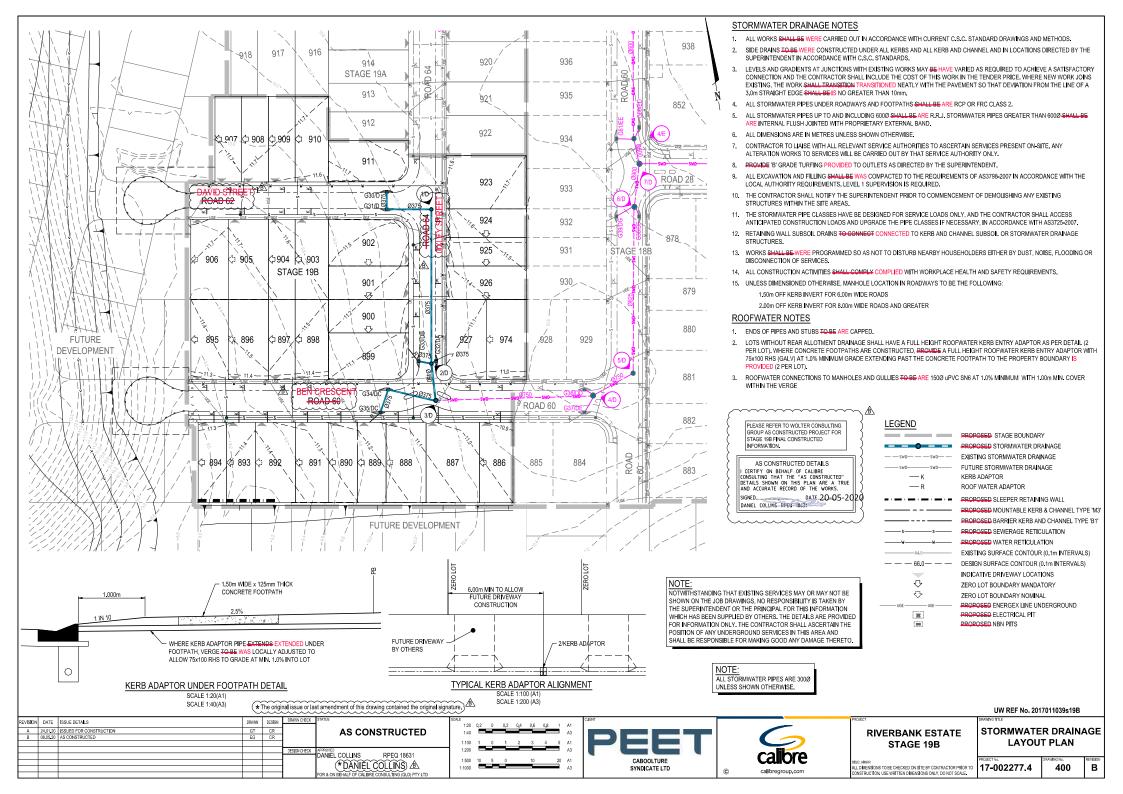
AS CONSTRUCTED DETAILS AS CONSTRUCTED DETAILS
I CERTIFY ON BEHALF OF CALIBRE
CONSULTING THAT THE "AS CONSTRUCTED"
DETAILS SHOWN ON THIS PLAN ARE A TRUE
AND ACCURATE RECORD OF THE WORKS.

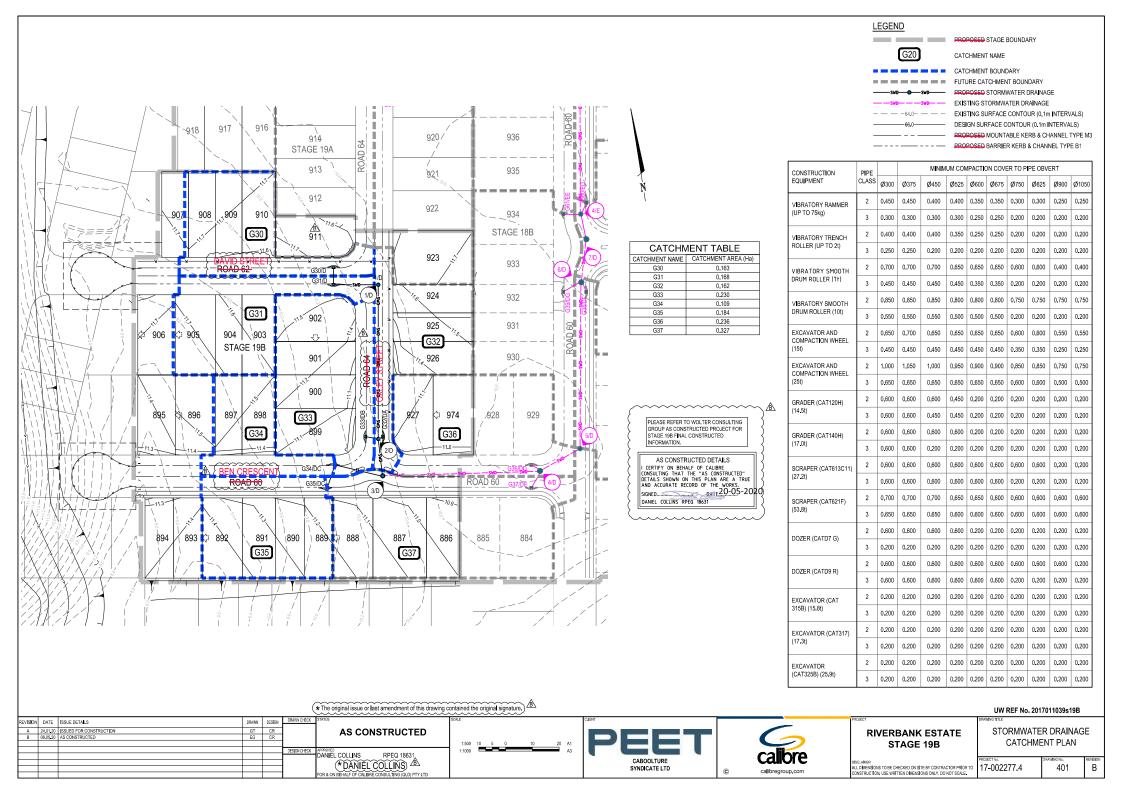
DATE 20-05-2020

* The original issue or last amendment of this drawing contained the original signature.

REVISION DATE ISSUE DETAILS DRAWN DESIGN A 24,01,20 ISSUED FOR CONSTRUCTION B 08,05,20 AS CONSTRUCTED **AS CONSTRUCTED** DANIEL COLLINS RPEQ 18631 *DANIEL COLLINS)

RIVERBANK ESTATE STAGE 19B

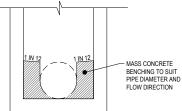

SIGNS AND LINEMARKING LAYOUT PLAN

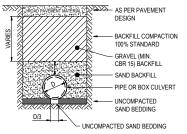

UW REF No. 2017011039s19A

DISCIAINER

ALL DIMENSIONS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO CONSTRUCTION, USE WRITTEN DIMENSIONS ONLY, DO NOT SCALE. 17-002277.4 306

REVISION B


*DANIÈL COLLINS) 🕭


NOTES:

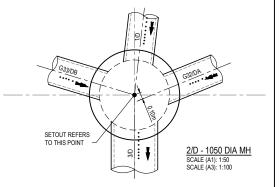
NOTWITHSTANDING THE STORMWATER STRUCTURE LEVELS SHOWN, THE COVER OR GRATE LEVEL SHALL SUIT SUITED THE FINISHED SURFACE PROFILE.

THE PIPE CLASSES HAVE BEEN DESIGNED FOR SERVICE LOADS ONLY. THE CONTRACTOR SHALL ASSESS ANTICIPATED LOADS AND UPGRADE THE PIPE CLASSES IF NECESSARY IN ACCORDANCE WITH AS 3725-1989. CRACKED PIPES WILL NOT BE WERE NOT ACCEPTED.

REFER CONSTRUCTION EQUIPMENT LOADING TABLE ON DRG 17-002277.4-401

TRENCH DETAIL TO ROADWAYS - TYPE U

TRENCH NOTES:


- TYPICAL TYPE U TRENCH TO CABOOLTURE SHIRE COUNCIL STANDARD DRAWING 01-83.
- ALL WORKS SHALL BE WERE CONSTRUCTED IN ACCORDANCE WITH MAIN ROADS SPECIFICATIONS FOR ROADWORKS WITH THE EXCEPTION OF ASPHALT SURFACING FOR ACCESS AND COLLECTOR ROADS WHICH SHALL BE WERE IN ACCORDANCE WITH BRISBANE CITY COUNCIL SPECIFICATIONS 5310 (SUPPLY OF DENSE GRADED ASPHALT) AND 5320 (LAYING OF ASPHALT)

NOTE: WHERE DISCREPANCY OCCURS BETWEEN THE DESIGN AND DEVELOPMENT MANUAL AND THE ABOVE SPECIFICATIONS, THE PROVISIONS OF THE DESIGN MANUAL SHALL APPLY.

CV = CHARACTERISTICS VALUE DOS = DEGREE OF SATURATION FOR BASE (FINAL) LAYER

TYPICAL MANHOLE BENCHING DETAIL TO PIT 1/D PLEASE REFER TO WOLTER CONSULTING GROUP AS CONSTRUCTED PROJECT FOR STAGE 19B FINAL CONSTRUCTED INFORMATION. AS CONSTRUCTED DETAILS I CERTIFY ON BEHALF OF CALIBRE CONSULTING THAT THE "AS CONSTRUCTED" DETAILS SHOWN ON THIS PLAN ARE A TRUE AND ACCURATE RECORD OF THE WORKS, SIGNED DATE 20-05-2020 DANIEL COLLINS RPEQ 18631 2/D SETOUT REFERS TO THIS POINT 3/D - 1200 DIA MH SCALE (A1): 1:50 SCALE (A3): 1:100

REFE	RENCE PO	DINT LOCAT	ION FOR
1	DRAINAGE	STRUCTUR	RES
STRUCTURE TYPE		FAL CONTROL POINT LOCATION)	VERTICAL CONTROL (REFERENCE LEVEL)
MANHOLE	REF	€ OF MAIN SHAFT	FINISHED SURFACE LEVEL
GULLY PIT	REF	CENTRE OF STRUCTURE	KERB LIP LEVEL
HEADWALL	REF	INTERSECTION OF HEADWALL FACE AND PIPE [©] L	TOP OF HEADWALL

UW REF No. 2017011039s19B

CABOOLTURE SYNDICATE LTD

RIVERBANK ESTATE
STAGE 19B

STORMWATER DRAINAGE LONGITUDINAL SECTIONS

ISCLAIMER

LL DIMENSIONS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO
ONSTRUCTION. USE WRITTEN DIMENSIONS ONLY, DO NOT SCALE.

17-002277.4

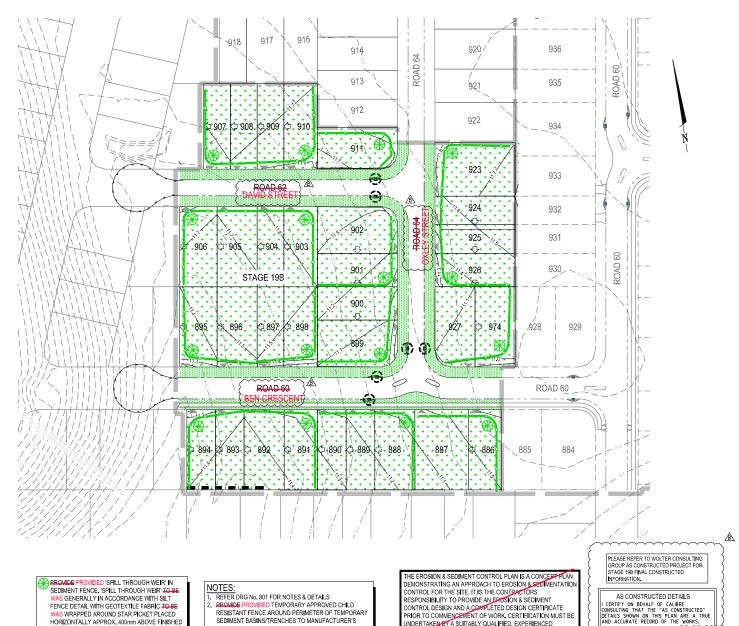
В 402

	LOCATION			DRAIN DESIGN							HEADLOSSES PART FULL DESIGN LEVELS																																				
					to	: 1	C10	С	A	C*A	+CA	Q		+		Qg	Qb		tc	1	+CA (Qt C	Qm C	s Qr) L	S		V	T		V2/2g	Ku	hu	KI h	I K	w hv	/ Sf	hf		Vp						+	
DESIGN ARI	STRUCTURE No.	DRAIN SECTION	SUB-CATCHMENTS CONTRIBUTING	LAND USE	SLOPE OF CATCHMENT SUB-CATCHMENT			CO-EFFICIENT OF RUNOFF		EQUIVALENT AREA	SUM OF (C * A)	SUB-CATCHMENT DISCHARGE	(INC. BYPASS) ROAD GRADE	AT INLET MINOR FLOW	ROAD	FLOW INTO INLET		BYPASS STRUCTURE No.		RAINFALL	TOTAL (C * A)		CAPACITY			PIPE GRADE	PIPE / BOX DIMENSIONS (CL/	(PIPE GRADE VELOCITY)	IN REACH	STRUCTURE RATIOS FOR Y. VALUE CALCULATIONS				CO-EFFICIENT LAT PIPE STRUCT		CHANGE IN W.S.E			DEPTH SI)				UPSTREAM H.G.L	LAT.H.G.L		INVERT LEVE	STRUCTURE No.
yrs 10 100	G1/A	G1/A	G1		% mi		47 0.84	0.84 1.00	0,268 0,268	ha 0.225	0.225 0.268	92 163		% I /s		Vs 88	Vs 4	G4/AB	13.00		ha I/: 0.225 0.268		5 I/S 596 7	5 88	8,938		mm 375(2)	m/s 0.80 (1.58)	min 0.15	Qg 0.088 Qo 0.088 Do 375	0.033	-	m 0.168		m 5.	17 0.1			m 3	m/s	m 10.203 10.114	m 10.576 10.553		m	m 10.744 1		G1/A
100		to G2/A			13	200 2	19 0.84	1.00	0.268	0.268	0.268	FLOW	/ WIDTH/DEP OWNSTREAM	TH 2.575W 4 0.481m	'd m				13.00	219	0.268			(Pipe flow=	Grate flow)			(1.58)		CHRT 32: Vo2/2gDo 0.09 H/Do 0.99 Kg side flow 5.17 end flow 4.06											10.114	10.553					
10 100	G2/A	G2/A to G3/A	G1;G2		13 13	1.00 1 1.00 2	47 0.84 19 0.84	0.84 1.00	0.315 0.315	0.265 0.315	0.265 0.315	108 192 FLOW	108 0 / WIDTH/DEP IOWNSTREAM	TH 2.760W	23 1	93	15	G3/A	13.15 13.15	147 218	0.490 : 0.583	153 25	596 1 (Pipe	72 18 Now Sum	75,47i upstratten f	8 0.57 l ows)	450(2)	1.14 (1.35)	1.10	Qg 0.093 Qo 0.181 Do 450 Angle 74 Chart 43 Si/Do 2.5 chartdeg Du Do Do 103 No 1.38 Kh.05.176 Qu/Qo 0.49 Cg 1.02 K 1.76 Si/Do 2.0 Kh.01 A2 Kh.0.5 1.94 K 1.95 Si/Do 1.5 Kh.182 Kh.05.16 K 2.17	0.066	1.93	3	nterp val for: CHART 42 S/Do 2.0 K0 1 S/Do 1.6 K0 1 Interp val for:	S/Do 1.98 I I 03 K0 5 1 I 08 K0 5 2	(w 1 95 .92 K 1 93 .04 K 2 05	29 0.40	0,305	5		10.114 9.684	10.426 10.121	10.553		10.555 1	0,942	32/A
10 100	G30/D	G30/D to G31/D	G30		8,	00 1	79 0.84 65 0.84	0.84 1.00	0.163 0.163	0.137 0.163	0.137 0.163	68 120 FLOW	68 0 / WIDTH/DEP	- 1	50 7S0.1	68	0	G31/D	8.00 8.00	179 265	0.137 0.163	120 2	70 5	2 68 (Pipe flow=	6,595 Grate fl ow)	0.40	375(2)	0.62 (1.00)	0.11	Qg 0.068 Qo 0.068 Do 375 CHRT 32: Vo2/2gDo 0.05 H/Do 1.23 Kg side flow 5.00 end flow 3.86	0.020	5.00					98 0.15	5 0.010	0		10.398 10.372	10.859 10.849	10.957		10.957 1	1.109 (330/D
10 100	G31/D	G31/ID to 1/ID	G30;G31		13 13	.00 1 .00 2	47 0.84 19 0.84	0.84 1.00	0.168 0.168	0.141	0,141 0.168	58 102 FLOW	58 0 / WIDTH/DEP	00 1 TH 1.419W	50 7S0,1	58	0	G33/DB	13,00 13,00	147 219	0.278 : 0.331	201 2	70 8 (Pipe	8 11- flow= Sum	16,70 upstratien f	0 0,40 Nows)	375(2)	1.03 (1.00)	0,27	Og 0,658 Qo 0,114 Do 375 Angle 90 Chert 47 SIDo 2,5 chartdeg Du Do 1,00 Ko 1,92 Ko 5,2 12 Qu'Co 0,49 Cg 1,01 K 2,12 SIDo 2,5 KO 1,92 Ko 5,2 12 K 2,12 SIDo 2,5 KO 1,92 Ko 5,2 12 K 2,12	0,054	1.75	1	Interp vel for: CHART 46 S/Do 2,6 K0 1 S/Do 2,0 K0 2 Interp val for:	S/Do 2.39 I I 82 KO 5 1 I 04 KO 5 1	71 K 1 71 92 K 1 92		2 0,071	1		10.352 10.285	10,755 10.684	10,849		10,873 1	1,109	331/D
10 100	1/D	1/D to 2/D	G30;G31												15				13.27 13.27	146 217	0.278 0.331	200 2	252 8 Pipe	6 11- Now=Sum	57,70: upstratten f	3 0.70 lows)	375(2)	1.03 (1.33)	0.93		0.054	1.08					68 0.42	0.244	4		10.265 9.861	10.626 10.382	10.684		10,694 1	1.313	1/D
10 100	2/D	2/D to 3/D	G30,G31,G32,G33						GRO STA INFO	OUP AS (AGE 19B I ORMATIO AS CONTIFY ON	ONSTR FINAL CO ON. STRUG BEHALF	DONSTRU	ETAILS	OR OR	15				14.20 14.20	142 210	0.607	22 23	252 1 Pipe	81 24 flow=Sum	13.87 upstratten f	6 0.50 flows)	450(2)	1.51 (1.27)	0.15	On 0.241 Dx 450 Plaw 170 marine sery gaste flow Routine 2.14 Equiv cells 19 CHART 49 High vel lat CASTOR DW 181 L CASTOR DW 18	0.116	1.39		G32/DA and 1 Vel1 0.488 Ve Eq Dia 501 A Routine 2.14 CHART 49 High vel lat E Dhv 501 Qhv Dhv 501 Qhv Dhv 375 Qhv Qhv Vel Shv Qhv Qhv Qhv Qhv Qhv Qhv Qhv Qhv Qhv Qhv Qhv Qhv Qhv	I/D I/2 1,003 I/2 1,003 I/2 1,003 I/2 206 F Equiv della I/2 20 I/2 333/DB I/2 20 I/2 333/DB I/2 34 I/2 34	49 & 1/D 0 0.83 1.99 1.79	3 0.71	1 0.099	9		9,657 9,588	10.220 10.121	10,382		10.383 1	0.595	2/D
10	G35/DC	G35/DC	G35		10	100 1	64 0.84	0.84	SIGNED	L COLEIN	S RPEU	م	AN ARE A THE WORK	5-20	20)	66	5	G37/DE	10.00	164	0.155	124 29	596 5	2 66	9.071	1 054	375(2)	0.03	0.15	CHART 33 Angle 0 SIP0.2.5 DILD 1.19 QipQo 0.46 K 1.44 SIP0.2.61 cor -0.103 Ku 1.41 Kw 1.41 Integralated Kur 1.60 Kw 1.60 K vid sabove for stepped rippes as grate flow grate flow decreased by 0.111 from 1/D Routine 3.2 Join Pipes:	0.044	4.24	1 1 1 1	Eqv G33/DA i Vel1 0.885 Ve Eq Dia 623 A CHART 50 Di Kw 0.05 Vu 0 Ku 0.96 Kw 0 Interpolated H K vals step pi Averaged Ku	ngle 174 F MDo 138 a 179 WSE (97 Jul = 134 Ki pes as pipi 139 Kw 1	ow 0.241 pha 0 i11 v= 1.35 iflow Ku 1.	.34 Kw 1.35		2		9.075	10.328	10.515		10.515 1	0,825 G	235/00
10 100	633100	to G34/DC	633		10	100 2	64 0.84 43 0.84	0,84 1,00	0,184 0.184	0.155 0.184	0,155 0.184	124 FLOW	/ WIDTH/DEP OWNSTREAM	TH 2.298V		"		007/02	10,00 10.00	164 243	0,155 0.184	2.	390	8 66 (Pipe flow=	Grate flow)	0,54	010(2)	0.93 (1.00)	0,13	CHRT 32: Vo2/2gDo 0.15 H/Do 1.18 Kg side flow 4.24 end flow 3.49	0,044	4,24	0,107		"		" ",4"	0,042			9.975 9.926	10.328 10.286	10,515		10,010	0,023	33100
10 100	G34/DC	G34/DC to 3/D	G35;G34		8) 8)	00 1	79 0.84 65 0.84	0.84 1.00	0.109 0.109	0.092 0.109	0.092 0.109	46 80		.50 2		46	0	G33/DB	10.15 10.15	163 242	0.247 0.293	197 25	596 8 (Pipe	9 10 Njow=Sum	18,28 upstratten f	5 0.42 lows)	375(2)	0.97 (1.03)	0,30	Qg 0,042 Qo 0,107 Do 375 Angle 85 Chart 47 SIDo 2.5 chartdeg DuDo 0,080 KO 2,14 KN 5.2.31 Qu'Qo 0,61 Cg 0,83 K 2.28 SIDo 2.5 KD 2,14 KN 5.2.31 K 2.28 SIDo 2.5 KD 2,14 KN 5.2.31 K 2.28	0,048	2,01	3	Interp val for: CHART 46 S/Do 2,5 K0 1 S/Do 2,0 K0 1 Interp val for:	S/Do 2.01 I I 63 KO 5 2 I 93 KO 5 2	02 K 1.96 03 K 2.01	15 0,38	0,069	9		9,926 9,849	10,190 10,121	10,286		10,305 1	0,810 G	34/DC
10 100	3/D	3/D to 4/D	G30;G31;G32;G33;G 35;G34												16				14.35 14.35	210	1.016	i93 25	596 2 (Pipe	61 333 flow Sum	upstratten f			0.73 (1.61)	0.98	Qo 0.332 Do 750 Routine 2.6 Combined pipes @ 90 deg delfIn Join Pipes: 2/D and G34/DC V41 1.1504 Vel2 0.842	0.027	1.26	9	Eq Dia 566 A CHART 50 Di Kw 0.30 Vu 1 Ku 1.57 Kw 2 Interpolated k	ngle 245 F J/Do0,75 a .32 WSE 0 .55	.07	39 0.08	8 0.048	В		9.849 9.613	10.087 10.039			10_126 1	0.769	3/D
10 100	G36/DD	G36/DID to 4/D	G36		13 13	100 1 100 2	47 0.84 19 0.84	0.84 1.00	0.236 0.236	0.198 0.236	0,198 0,236	81 144 FLOW	81 0 / WIDTH/DEP		50 7S0,1	81	0	G37/DE	13,00 13,00	147 219	0.198 0.236	144 7	90 6	3 81 (Pipe flow=	3,920 Grate fl ow)	0,50	375(2)	0.73 (1.12)	0.07	Qg 0,081 Qo 0,081 Do 375 CHRT 32: Vo2/2gDo 0,07 H/Do 1,16 Kg side flow 4,94 end flow 3,86	0,027	4.94	0.135		4.	34 0.1	35 0.21	0.008	8		9.613 9.593	10,047 10,039	10,182		10,182 1	0.443 G	36/DD
10 100	G37/DE	G37/DE to 4/D	G37		15 15	.00 1 .00 2	39 0.84 06 0.84	0.84 1.00	0.327 0.327	0.275 0.327	0.275 0.327	106 187 FLOW	111 0 / WIDTH/DEP		50 7S0,1	111	0		15,00 15,00	139 206	0.275 0.327	187 7	90 7	6 11 (Pipe flow=	1 7,107 Grate 1 ow)	0,50	450(2)	0.70 (1.27)	0.12	Qg 0.111 Qo 0.111 Do 450 CHRT 32: Vo2/2gDo 0.06 H/Do 0.94 Kg side flow 5.82 end flow 4.41	0.025	5,82	0.145		5.	32 0.1	45 0.15	5 0.01*	1		9.629 9.593	10.050 10.039	10,195		10,195 1	0.443	:37/DE
10 100	4/D	4/D to 5/D	G30,G31;G32,G33,G 35;G34;G36;G37												18		(10	(Sur 3% of overlan	15.33 15.33 Imp Area Ma I low diverted	i 1,579 \$ ur	0.896 n Flow Mai 0	.895 Over	and How I	504 flow= Sum Anj 0,387) 204mm/h = 1		3 0.30 lows)	750(2)	1.11 (1.39)	0.26	On 1,550 D.750 On 1,550 D.750 Resizes 3.2 Join Pipes: GSSPD and 3D Veri 0,653 Veri 2,750 Son 0,653 Veri 2,750 Son 0,653 Veri 2,750 Son 0,653 Veri 2,750 Hydy Veri Exposit cells 50 Hydy Veri Exposit cells 50 Dis 650 Dis 6,550 Dis 650 Dis 7,550 Common 2,750 Common 2,750 Common 2,750 Dis 650 Dis 7,550 Dis 650 Dis 7,500 Dis 650 Dis 650 Dis 65	0.063	1.18		QlwQo C 22 L No grate flow Ku=Kw= 1.71 Combined pip Join Pipes: Eqv G38/DD . Vel 1 0.722 Ve Eq Dia 950 A CHART 50 Di Kw 0.05 Vu C Ku 0.88 Kw 0 Interpolated R	HL 0.2 = 8 3/D and 8 3/D and 92 0.688 ngle 198 F J/Do 1.27 a 1.72 WSE (1.71 ase 337/DE ow 0.508 pha 0	75 0.19	0,033	3		9,593 9,542	9,965 9,932	10.039		10,040 1	0.506	4/D
																							CALC	ULAT	IONS	TABL	E																				

(*The original issue or last amendment of this drawing contained the original signature.)

UW REF No. 2017011039s19B

REVISION	DATE	ISSUE DETAILS	DRAWN	DESIGN	DRAWN CHECK	SIAIUS	SUALE
A	24,01,20	ISSUED FOR CONSTRUCTION	GT	CR		AS CONSTRUCTED	
В	08.05.20	AS CONSTRUCTED	EG	CR		AGGGROTHGGTED	
						APPROVED	
						DANIEL COLLINS RPEQ 18631	
						I *DANIEL COLLING A	
						I DANIEL COLLINS	
						FOR & ON BEHALF OF CALIBRE CONSULTING (QLD) PTY LTD	


RIVERBANK ESTATE STAGE 19B

STORMWATER DRAINAGE **CALCULATIONS SHEET**

DISCLAIMER ALL DIMENSIONS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO CONSTRUCTION, USE WRITTEN DIMENSIONS ONLY, DO NOT SCALE.

17-002277.4

REVISION B 403

LEGEND

SITE BOUNDARY PROPOSED SURFACE CONTOUR (0.1m INTERVALS) - 63.5 - - - -EXISTING SURFACE CONTOUR (0.2m INTERVALS) TEMPORARY CONSTRUCTION EXIT WASHDOWN DEVICE PROPOSED DIRTY WATER DIVERSION DRAIN TURFING/LANDSCAPING VERGE IN ACCORDANCE WITH LANDSCAPE PLAN STABILISED SURFACE (HYDROMULCH, MULCH OR SEED TO ALLOTMENTS PROPOSED BIO-RETENTION TO BE USED AS TEMPORARY SEDIMENT TRENCH GULLET INLET PROTECTION

EROSION AND SEDIMENT CONTROL NOTES:

- THE CONTRACTOR IS TO TAKE ALL NECESSARY PRECAUTIONS TO CONTROL AND MINIMISE EROSION AND DOWNSTREAM SEDIMENTATION DURING ALL STAGES OF CONSTRUCTION INCLUDING THE MAINTENANCE PERIOD.
- NOTWITHSTANDING THE DESIGN SHOWN ON THE DRAWINGS, THE CONTRACTOR IS RESPONSIBLE TO IMPLEMENT SEDIMENT CONTROL DEVICES USING BEST PRACTICES AS NECESSARY TO MINIMISE THE QUANTITY OF SEDIMENT LEAVING THE SITE.
- SOME VARIATIONS TO THE SPECIFIED CONSTRUCTION SEQUENCE MAY BE NECESSARY IN CERTAIN AREAS TO FACILITATE CONSTRUCTION. WHERE THIS IS THE CASE, ANY VARIATION MUST BE APPROVED BY THE SUPERINTENDENT PRIOR TO IMPLEMENTATION.
- AT ALL TIMES THE CONTRACTOR SHALL MONITOR THE PREVAILING WEATHER CONDITIONS AND PROTECT ANY DOWNSTREAM CONSTRUCTION GULLY INLETS.
- CLEARING OF SITE AND STOCKPILE SITE TO BE WAS DETERMINED ON SITE BY SUPERINTENDENT AND IS TO BE WAS CLEAR OF ANY WATER COURSE.
- WHERE POSSIBLE PROVIDED CUT-OFF DRAINS TO DIVERT CLEAN WATER FROM UNDISTURBED CATCHMENT
- ALL PERIMETER BANKS/SWALES SHALL HAVE HAD UNINTERRUPTED POSITIVE GRADE TO AN
- CONSTRUCTED WASH DOWN BAY OR SHAKE DOWN AT ENTRY/EXIT TO COUNCIL STANDARDS AND TO THE SATISFACTION OF COUNCIL'S LICENSING AND COMPLIANCE
- INLETS TO HAVE HAD SILT PROTECTION IN ACCORDANCE WITH KERB INLET PROTECTION DETAIL AT LOCATIONS SHOWN OR AS DIRECTED BY THE SUPERINTENDENT.
- THE EXTENT OF GRASSING OR HYDROMUL CHING BE WAS DETERMINED BY THE ENGINEER AND SHALL-BE WAS SEEDED, AS SPECIFIED, WITHIN SEVEN DAYS OF FINAL TRIMMING.
- THE CONTRACTOR SHALL BE WAS RESPONSIBLE FOR COMPLYING WITH COUNCIL'S REQUIREMENTS IN RELATION TO GRASS STRIKE AND GRASS COVERAGE RATES AT THE ON AND OFF MAINTENANCE INSPECTIONS.
- PROVIDE PROVIDED TURF STRIPS OVER SEWER/ROOFWATER LINES WHERE ADJACENT TO EXISTING PROPERTIES
- ALL SEDIMENT FENCES TO BE WERE INSTALLED TO THE SATISFACTION OF COUNCIL'S LICENSING AND COMPLIANCE OFFICER.
- ALL OPEN ENDED PIPEWORK LOCATED IN OPEN TRENCHES AND INCOMPLETE PITS ARE TO SEWERE CAPPED WITH SUITABLE FILTER CLOTH AT THE END OF EACH DAY'S WORK AND
- IMMEDIATELY PRIOR TO STORMS. ALL MATERIALS TRACKED OR SEDIMENT WASHED ONTO COUNCIL'S ROAD FROM THE
- DEVELOPMENT ARE TO BE WERE BROOMED UP AND COLLECTED.
 ALL SEDIMENT CONTROL DEVICES SHALL BE WERE MONITORED, CLEANED AND/OR REPAIRED WHENEVER THE CAPACITY OF THE EROSION AND SEDIMENT CONTROL MEASURE FALLS FELL BELOW 75%.
- ALL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE WERE INSPECTED AT LEAST
 DAILY (WHEN WORK IS OCCURRED ON SITE) OR WEEKLY (WHEN WORK IS NOT <u>∕</u>₿ 17. OCCUPRING DID NOT OCCUR ON SITE), WITHIN 24 HOURS OF EXPECTED RAIN AND WITHIN 18 HOURS OF A RAINFALL EVENT AS REQUIRED TO MAINTAIN CONTROL DEVICES.
 - ALL TEMPORARY EROSION AND SEDIMENT CONTROL (ESC) MEASURES ARE TO BE WERE MAINTAINED AND FULLY OPERATIONAL DURING THE MAINTENANCE PERIOD, AND ARE TO BE WERE REMOVED AFTER THE SATISFACTORY COMPLETION OF AN 'OFF MAINTENANCE' INSPECTION AND PRIOR TO FORMAL ACCEPTANCE BY COUNCIL.
 - NO OBSTRUCTIONS SHALL BE WERE PLACED ON COUNCIL'S PUBLIC ROADS OR GULLY PITS FOR SAFETY REASONS.

(* The original issue or last amendment of this drawing contained the original signature.)

UW REF No. 2017011039s19B

REVISION DATE ISSUEDETAILS DESIGN AS CONSTRUCTED ANIEL COLLINS RPFQ 18631 (*DANIÉL COLLINS) 🗥

SPECIFICATION.

HORIZONTALLY APPROX. 400mm ABOVE FINISHED

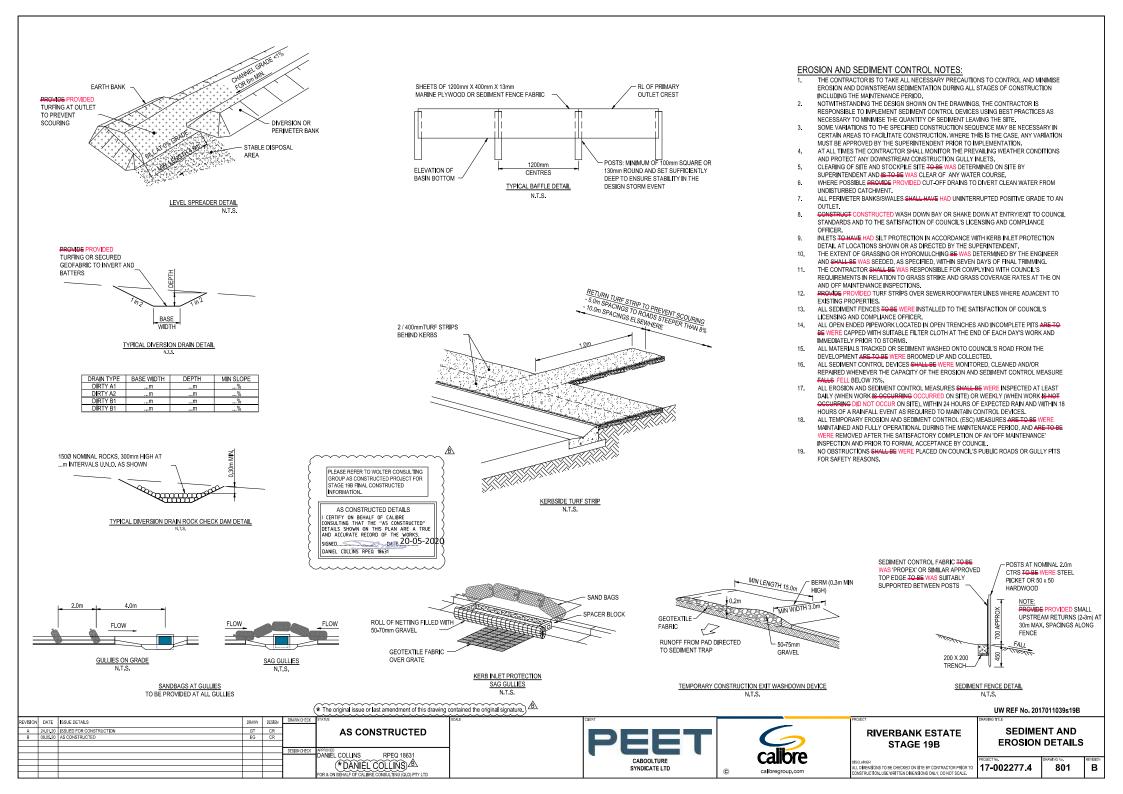
SURFACE

SEDIMENT BASINS/TRENCHES TO MANUFACTURER'S

UNDERTAKEN BY A SUITABLY QUALIFIED, EXPERIENCED

PROFESSIONAL NOT DIRECTLY EMPLOYED BY THE PRINCIPAL.

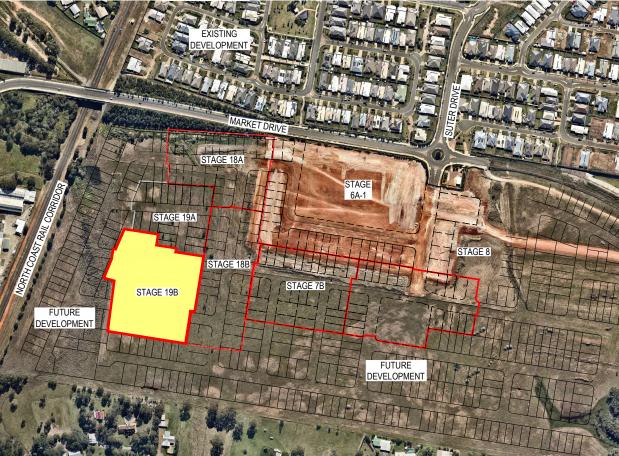
DANIEL COLLINS RPEQ 18631


RIVERBANK ESTATE STAGE 19B

SEDIMENT AND EROSION LAYOUT PLAN

L DIMENSIONS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO INSTRUCTION, USE WRITTEN DIMENSIONS ONLY, DO NOT SCALE,

17-002277.4


800

RIVERBANK ESTATE

LOT 1008 WATERSIDE ESPLANADE CABOOLTURE SOUTH STAGE 19B

FOR PEET CABOOLTURE SYNDICATE LTD

AREA OF SITE: 1.83ha

LOT INFORMATION

EXISTING LOTS LOT 1007 SP295486 LOT 1008 SP295506 PROPOSED NO. OF LOTS: 32

PLEASE REFER TO WOLTER CONSULTING GROUP AS CONSTRUCTED PROJECT FOR STAGE 19B FINAL CONSTRUCTED

AS CONSTRUCTED DETAILS I CERTIFY ON BEHALF OF CALIBRE
CONSULTING THAT THE "AS CONSTRUCTED"
DETAILS SHOWN ON THIS PLAN ARE A TRUE
AND ACCURATE RECORD OF THE WORKS, DATE 12-05-202 DANIEL COLLINS RPEG 18631

DRAWING INDEX

DRAWING NO.

COVER SHEET, LOCALITY PLAN AND DRAWING INDEX

BULK EARTHWORKS

BULK EARTHWORKS LAYOUT PLAN BUILK FARTHWORKS SECTIONS

201 202 TEMPORARY SWALE LONGITUDINAL SECTION

203 COMPENSATORY EARTHWORKS LAYOUT PLAN

ROADWORKS

SURVEY SETOUT LAYOUT PLAN AND SETOUT TABLES

ROADWORKS LAYOUT PLAN

INTERSECTION DETAILS PLAN AND SETOUT TABLES AD 60 LONGITUDINAL AND CROSS SECTIONS

ROAD 64 CONGITUDINAL AND CROSS SECTIONS ROAD 62 LONGITUDINAL AND CROSS SECTIONS

SIGNS AND LINEMARKING LAYOUT PLAN

DRAINAGE

STORMWATER DRAINAGE LAYOUT PLAN

401 STORMWATER DRAINAGE CATCHMENT PLAN STORMWATER DRAINAGE LONGITUDINAL SECTIONS 402

STORMWATER DRAINAGE CALCULATIONS SHEET

SEWER RETICULATION

SEWER RETICULATION COVER SHEET SEWER RETICULATION LAYOUT PLAN

SEWER RETICULATION LONGITUDINAL SECTIONS SHEET 1 OF 2

WATER RETICULATION

WATER RETICULATION COVER SHEET WATER RETICULATION LAYOUT PLAN

FROSION AND SEDIMENT PLAN

SEDIMENT AND EROSION LAYOUT PLAN SEDIMENT AND EROSION DETAILS

LOCALITY PLAN

CONSTRUCTION NOTE

THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH:

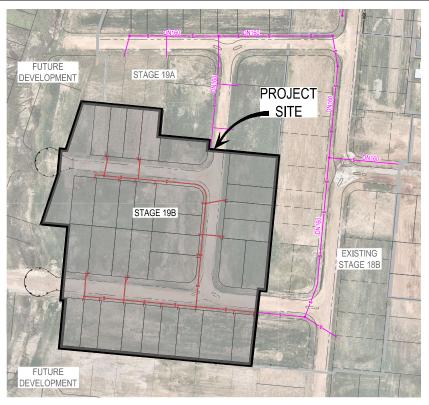
SEDIMENT AND EROSION HAZARD ASSESSMENT (PREPARED BY SOIL SURVEYS)

.. ACID SULPHATES SOILS REPORT (PREPARED BY SOIL SURVEYS)

GEOTECHNICAL REPORT (PREPARED BY SOIL SURVEYS)

VEGETATION MANAGEMENT PLAN (VMP) (PREPARED BY SAUNDERS HAVILL GROUP) ENVIRONMENTAL MANAGEMENT PLAN (EMP) (PREPARED BY SAUNDERS HAVILL GROUP

CONSTRUCTION HOLD POINT


ONCE THE BASE OF MANHOLES, INSPECTION PITS, GULLIES AND FIELD INLETS FOR STORMWATER DRAINAGE AND SEWER RETICULATION HAVE BEEN WERE POURED, FURTHER CONSTRUCTION SHALL DID NOT PROCEED UNTIL THE SUPERINTENDENT AND OR ENGINEER HAVE INSPECTED THE WORKS FOR FINISHED LEVELS AND APPROVED CONSTRUCTION TO

CONSTRUCTION HOLD POINT PRIOR TO CONSTRUCTION THE CONTRACTOR SHALL VERIFY VERIFIED LEVELS OF ALL EXISTING CROSSINGS AND CONNECTION POINTS.

RIVERBANK ESTATE

M.B.R.C. REF No. DA/34784/2017/V3RL 17-002277.4 AS 08.05.20 000

CONSTRUCTED

OCALITY	PLAN
N.T.S.	

neston

NAME OF EST	ATE	RIVERBANK ESTATE							
SUBDIVIDER		PEET CABOOLTURE SYNDICATE							
APPLICATION	No.	2017011039s19B							
SP DELEGATE APPROVAL DA		**							
DRAWING/PLA	AN No.	17-002277.4 - 500-502							
No. OF LOTS		32							
AREA IN Ha.		1.83							
LENGTH	DN110	32							
OF SEWERS	DN160	388.413m							

DATUM LEVEL P.S.M. 109474 RL 15.122 AHD LOT 1006 BERRY STREET CABOOLTURE SOUTH

CALIBRE CONSULTING (QLD) PTY LTD	
CONTACT	
DANIEL COLLINS	
TELEPHONE	
(07) 3895 3444	

PLEASE REFER TO WOLTER CONSULTING GROUP AS CONSTRUCTED PROJECT FOR STAGE 19B FINAL CONSTRUCTED INFORMATION.

AS CONSTRUCTED DETAILS I CERTIFY ON BEHALF OF CALIBRE CONSULTING THAT THE "AS CONSTRUCTED" DETAILS SHOWN ON THIS PLAN ARE A TRUE AND ACCURATE RECORD OF THE WORKS. DATE 12-05-2020 DANIEL COLLINS RPEQ 18631

LIVE WORKS TABLE

EVISION DATE ISSUE DETAILS

NO.	DESCRIPTION	SEW DIA	MH No.	MH/MS TYPE	COVER TYPE	LOT No.	F.S.L.	E.S.L.	I.L.	DEPTH	
1(A)	5.00m FROM EXISTING STUB, CONTRACTOR, TO LAY NEW RETICULATION SEWERS, AFTER CLEANSING, TESTING AND INSPECTION, NOTIFY UNITYWATER,	DN160PE	5/8	END	-	886	10.676	10.676	8.567	2.109m	
1(B)	AFTER SUCCESSFUL "ON MAINTENANCE" INSPECTION UNITYWATER TO CARRY OUT WORKS ASSOCIATED WITH PROPOSED LIVE CONNECTIONS AND CONNECTION TO EXISTING DN160 STUB.										
1(C)	AFTER SUCCESSFUL "ON MAINTENANCE" INSPECTION UNITYWATER TO CARRY OUT WORKS ASSOCIATED WITH PROPOSED LIVE PROPERTY CONNECTION FOR LOT 886.										

ANIFI COLLINS

SEWER RETICULATION NOTES

- ALL WORK AND MATERIALS SHALL BE WERE IN ACCORDANCE WITH FOLLOWING CURRENT SPECIFICATIONS AND STANDARDS (IN ORDER OF PRIORITY):
- SOUTH EAST QUEENSLAND SEWERAGE CODE (SEQ-SP's) - SEWERAGE CODE OF AUSTRALIA WSA02-2014 V3.1.
- UNLESS SPECIFIED OTHERWISE, ALL WORK AND MATERIALS SHALL COMPLY COMPLIED WITH THE RELEVANT AUSTRALIAN STANDARDS.
- THE CONSTRUCTION OF THE SEWERAGE WORK SHOWN ON THIS DRAWING MUST HAVE HAD CONTRACT ADMINISTRATION UNDERTAKEN BY AN ENGINEER WHO HAS RPEQ REGISTRATION. WORK NOT COMPLYING WITH THIS REQUIREMENT WILL NOT BE WAS NOT PERMITTED TO CONNECT TO THE RETICULATION SYSTEM.
- ALL WORK ON EXISTING SEWERS TO BE CARRIED OUT BY UNITYWATER AT THE DEVELOPERS EXPENSE, OR AS DIRECTED BY UNITYWATER.
- ALL PIPES AND MATERIALS SHALL COMPLY COMPLIED WITH THE REQUIREMENTS OF THE 'ACCEPTED PRODUCTS AND
- EACH ALLOTMENT CHALL BEIS SERVED BY A DN110 PE (OR DN100 uPVC) PROPERTY CONNECTION. FOR ALLOTMENTS OTHER THAN SINGLE RESIDENTIAL, A DN160 PE (OR DN150 uPVC) PROPERTY CONNECTION SHALL BE WAS PROVIDED.
- PROPERTY CONNECTIONS SHALL BE ARE LOCATED WITHIN THE PROPERTY AS SHOWN IN THE DRAWINGS. PROPERTY CONNECTION BRANCHES SHALL EXTENDED INTO THE PROPERTY A MINIMUM OF 300mm (QUU,
- GCCC, LCC & RCC) OR 500mm (UNITY WATER) AND A MAXIMUM OF 750mm.
 WHERE PIPES ARE WERE LAID IN FILL, THE FILLING SHALL BE WAS CARRIED OUT IN LAYERS NOT EXCEEDING 300mm (LOOSE) IN DEPTH AND SHALL BE WAS COMPACTED UNTIL THE COMPACTION IS NOT LESS THAN 95% OF THE MATERIAL'S MAXIMUM COMPACTION WHEN TESTED IN ACCORDANCE WITH A.S. 1289 (MODIFIED COMPACTION). TESTING SHALL BE WAS CARRIED OUT AFTER EACH ALTERNATE LAYER, IN ALL SUCH CASES, APPROVAL OF CONSTRUCTED SEWERS WILL NOT BE WAS NOT ISSUED BY SEQ SERVICE PROVIDER UNLESS CERTIFICATES ARE
- PRODUCED CERTIFYING THAT THE REQUIRED COMPACTION HAS BEEN ACHIEVED.

 10. WHERE SEWERS HAVE A GRADE OF 1 IN 20 OR STEEPER, BULKHEADS SHALL BE WERE CONSTRUCTED IN ACCORDANCE WITH THE SEC-SP's.
- 11. THE CONTRACTOR SHALL VERIFY THE LOCATION AND DEPTH OF EXISTING SERVICES WITH RELEVANT AUTHORITIES BEFORE COMMENCING WORKS.
- 12. SEWER SHALL BE WAS DISUSED/ABANDONED IN ACCORDANCE WITH PROCEDURES SET OUT IN THE SEQ-SP's.
- 13. BENCH MARK MARKED AND LEVEL LEVELED TO AHD.

ENVIRONMENTAL MANAGEMENT APPROVAL NOTES

VEGETATION PROTECTION

- A. TREES LOCATED ALONG FOOTPATH SHOULD BE WERE, WHERE POSSIBLE, TRANSPLANTED PRIOR TO CONSTRUCTION, OR REPLACED IF DESTROYED.
- B. WHEN WORKING WITHIN 4m OF TREES, RUBBER OR HARDWOOD GIRDLES SHOULD BE WERE CONSTRUCTED WITH 1.8m BATTENS CLOSELY SPACED AND ARRANGED VERTICALLY FROM GROUND LEVEL. GIRDLES MUST BE WERE STRAPPED TO TREES PRIOR TO CONSTRUCTION AND REMAIN REMAINED TO COMPLETION.
- C. WHERE POSSIBLE, TREE ROOTS SHOULD BE WERE TUNNELLED UNDER, RATHER THAN SEVERED. IF ROOTS ARE WERE SEVERED, THE DAMAGED AREA SHOULD BE WAS TREATED WITH A SUITABLE FUNGICIDE, CONTACT CONTACTED COUNCIL ARBORIST FOR FURTHER ADVICE.
- ANY TREE LOPPING REQUIRED SHOULD BE WAS UNDERTAKEN BY AN APPROVED ARBORIST.
- SOIL
 A. TOPSOIL AND SUBSOIL SHOULD BE WAS STOCKPILED SEPARATELY.
- B. CARE SHOULD BE WAS TAKEN TO PREVENT SEDIMENT FROM ENTERING THE STORMWATER SYSTEM. THIS MAY INVOLVE HAVE INVOLVED PLACING APPROPRIATE SEDIMENT CONTROLS AROUND STOCKPILES.

CREEK CROSSINGS

- A. SILTATION CONTROL MEASURES SHOULD BE WERE PLACED DOWNSTREAM OF ANY EXCAVATION
- APPROPRIATE SEDIMENT CONTROLS SHOULD BE WERE USED TO PREVENT SEDIMENT FROM ENTERING THE CREEK.
- C. NO SOIL SHOULD BE WAS STOCKPILED WITHIN 5m OF THE CREEK.

- A. PREDISTURBANCE SOIL PROFILES AND COMPACTION LEVELS ARE TO BE WERE REINSTATED.
- B. PREDISTURBANCE VEGETATION PATTERNS SHOULD BE WERE RESTORED.

ALL CONSTRUCTION WORK UNDERTAKEN BY THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE WORKPLACE HEALTH AND SAFETY LEGISLATION.

ALL ENVIRONMENTAL PROTECTION MEASURES SHALL BE WERE IMPLEMENTED PRIOR TO ANY CONSTRUCTION WORK, INCLUDING CLEARING COMMENCING.

PROPERTY CONNECTIONS HAVE BEEN DESIGNED TO CONTROL THE REQUIRED SERVICE AREA OF EACH LOT AT A GRADE OF 1 IN 60 AND A MAXIMUM DEPTH OF PROPERTY CONNECTION OF 1.50m, UNLESS NOTED OTHERWISE.

TANGENT POINT SET-OUT INFORMATION FOR HORIZONTAL BENDS IS TO BE INCLUDED ON AS-CONSTRUCTED DRAWINGS

NOTE:

NOTWITHSTANDING THAT EXISTING SERVICES MAY OR MAY NOT BE SHOWN ON THE JOB DRAWINGS, NO RESPONSIBILITY IS TAKEN BY THE SUPERINTENDENT OR THE PRINCIPAL FOR THIS INFORMATION WHICH HAS BEEN SUPPLIED BY OTHERS. THE DETAILS ARE PROVIDED FOR INFORMATION ONLY. THE CONTRACTOR SHALL ASCERTAIN THE POSITION OF ANY UNDERGROUND SERVICES IN THIS AREA AND SHALL BE RESPONSIBLE FOR MAKING GOOD ANY DAMAGE THERETO

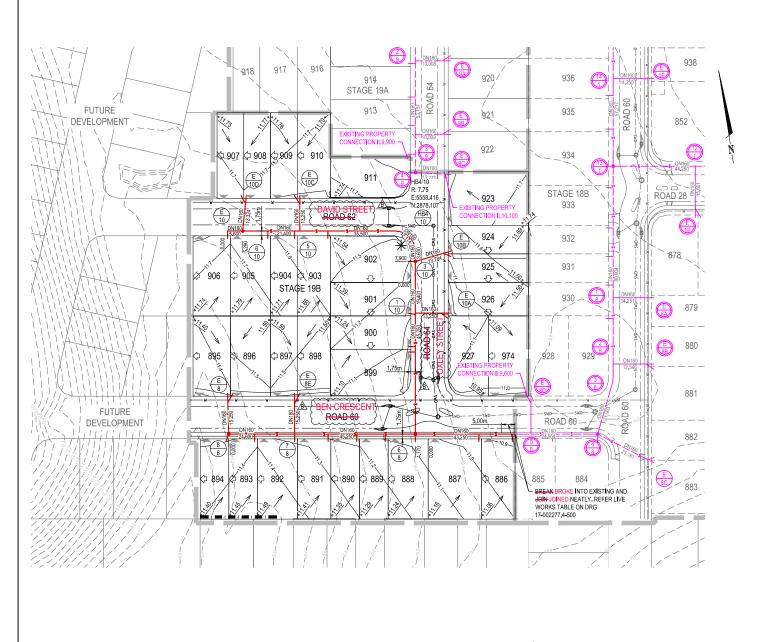
(* The original issue or last amendment of this drawing contained the original signature.)

AS CONSTRUCTED

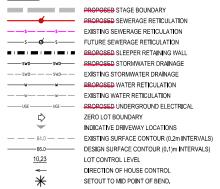
RPFQ 18631 (*DANIÈL COLLINS) 🕭 RIVERBANK ESTATE STAGE 19B

SEWER RETICULATION COVER SHEET

SYNDICATE LTD



L DIMENSIONS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO DISTRUCTION, USE WRITTEN DIMENSIONS ONLY, DO NOT SCALE.


17-002277.4

UW REF No. 2017011039s19B

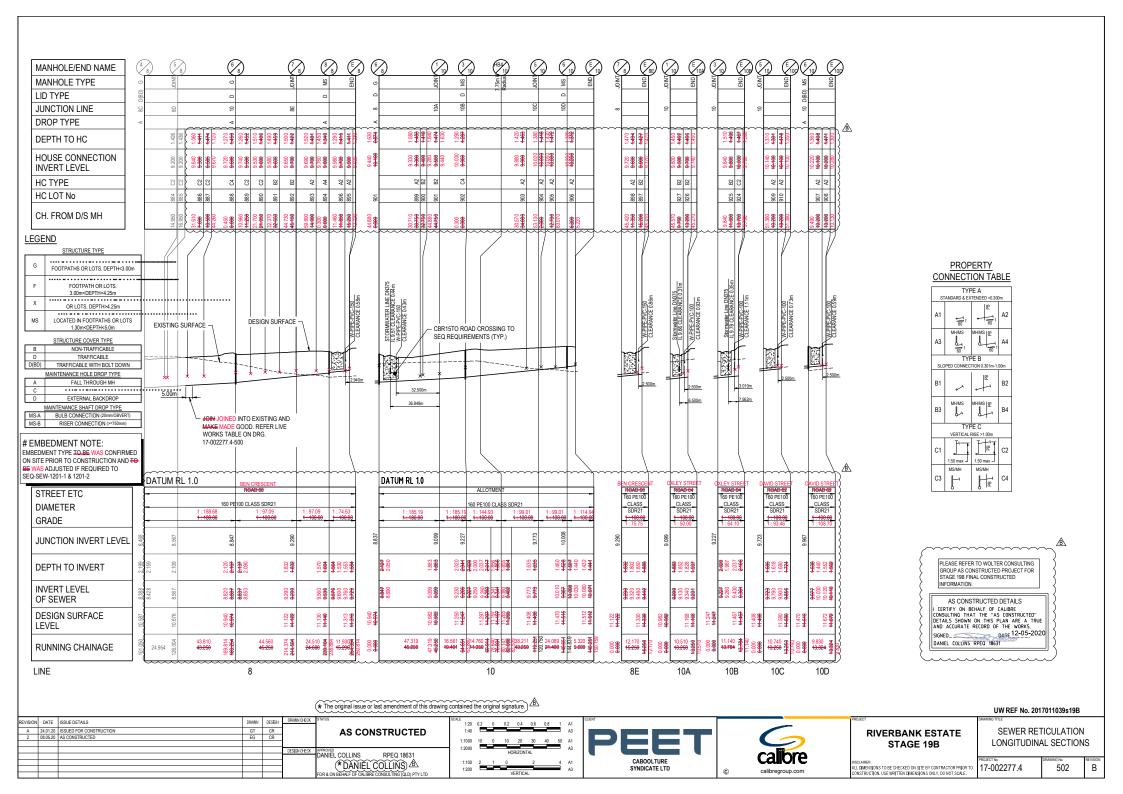
500

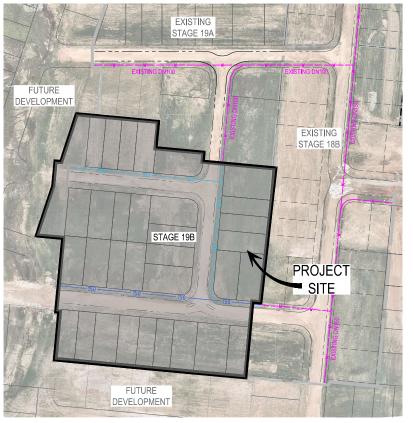
REFER DRAWING NO 17-002277.3 - 500 FOR STANDARD SEWERAGE NOTES, LOCALITY PLAN AND LIVE WORKS TABLE

UW REF No. 2017011039s19B

*The original issue or last amendment of this drawing contained the original signature. REVISION DATE ISSUE DETAILS DRAWN DESIGN AS CONSTRUCTED RPEQ 18631 ANIFI COLLINS *DANIEL COLLINS &

RIVERBANK ESTATE STAGE 19B


SEWER RETICULATION LAYOUT PLAN


ISCLANER LL DIMENSIONS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO ONSTRUCTION, USE WRITTEN DIMENSIONS ONLY, DO NOT SCALE.

17-002277.4

501

ечысы В

LOCALITY PLAN

ABBREVIATIONS

- ASBESTOS CEMENT

- CAST IRON CEMENT LINED

- CAST IRON SPUN LINED

- CONCRETE REINFORCED

- CUT TO SUIT - CONCRETE UN-REINFORCED

- DUCTILE IRON

CISL CR CTS CUR DI DICL

- DUCTILE IRON CEMENT LINED

- DIAMETER NOMINAL

DN EW FH HC

- EARTHENWARE - FIRE HYDRANT

- HOUSE CONNECTION

HP - HIGH POINT - JOINT DEFLECTION

JD LP MH - LOW POINT - MAINTENANCE HOLE

MS - MAINTENANCE SHAFT

- MODIFIED POLY VINYL CHLORIDE

MSBW - MILD STEEL BUTT WELD

MSCL PE - MILD STEEL CEMENT LINED - POLYETHYLENE

PMT - PADMOUNT TRANSFORMER (ELECTRICAL SITE)

RTS

- ROTATE TO SUIT

- STOP COCK/WATER METER

SC TEP - TERMINAL ENTRY POINT - ORIENTED POLY VINYL CHLORIDE

oPVC

- UNITYWATER

- VITRIFIED CLAY

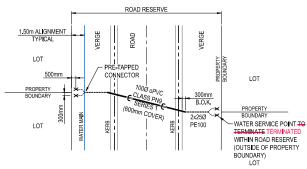
PLEASE REFER TO WOLTER CONSULTING GROUP AS CONSTRUCTED PROJECT FOR STAGE 19B FINAL CONSTRUCTED INFORMATION. AS CONSTRUCTED DETAILS I CERTIFY ON BEHALF OF CALIBRE
CONSULTING THAT THE "AS CONSTRUCTED"
DETAILS SHOWN ON THIS PLAN ARE A TRUE
AND ACCURATE RECORD OF THE WORKS. DANIEL COLLINS RPEQ 18631

WATER RETICULATION NOTES

- 1. ALL WORK AND MATERIALS SHALL BE WERE IN ACCORDANCE WITH FOLLOWING CURRENT
- SPECIFICATIONS AND STANDARDS (IN ORDER OF PRIORITY):
- SOUTH EAST QUEENSLAND WATER SUPPLY CODE (SEQ-SP's)
- WATER SUPPLY CODE OF AUSTRALIA WSA03-2011 V3.1. 2. UNLESS SPECIFIED OTHERWISE, ALL WORK AND MATERIALS SHALL COMPLY COMPLIED WITH THE
- RELEVANT AUSTRALIAN STANDARDS.
- 3. ADOPT ADOPTED LIP OF KERB AS PERMANENT LEVEL.
- 4. COVER ON MAINS FROM PERMANENT LEVEL TO BE WERE AS SHOWN IN STANDARD DRAWING SEQ-WAT-1200-2
- 5. CONDUITS TO SE WERE INSTALLED IN ACCORDANCE WITH THE STANDARD DRAWINGS IN SEC-SP's.
 6. A WATER METER SUPPLIED AT DEVELOPER'S COST, IS TO BE WAS INSTALLED AT THE SERVICE POINT OF EACH LOT IN ACCORDANCE WITH THE STANDARD DRAWINGS IN SEQ-SP's.

 7. ALL MATERIAL USED IN THE WORKS SHALL COMPLY COMPLIED WITH THE SEQ-SP's.

- ALL MATERIAL DELETIN HE WORKS STRESSON.
 ALL CONCRETE FOOTPATHS TO BE WERE CLEAR OF WATER MAINS, WHERE POSSIBLE.
 THE CONSTRUCTION OF THE WATER SUPPLY RETICULATION WORK SHOWN ON THIS DRAWING MUST MAYE HAD CONTRACT ADMINISTRATION UNDERTAKEN BY AN ENGINEER WHO HAS RPEQ REGISTRATION. WORK NOT COMPLYING WITH THIS REQUIREMENT WALL NOT SE WAS NOT PERMITTED TO CONNECT TO THE RETICULATION SYSTEM.
- 10. ALL WORK ON EXISTING WATER MAINS TO BE WERE CARRIED OUT BY UNITYWATER AT THE DEVELOPERS


ENVIRONMENTAL MANAGEMENT APPROVAL NOTES

VEGETATION PROTECTION

- TREES LOCATED ALONG FOOTPATH SHOULD BE WERE, WHERE POSSIBLE, TRANSPLANTED PRIOR TO CONSTRUCTION, OR REPLACED IF DESTROYED.
- WHEN WORKING WITHIN 4m OF TREES, RUBBER OR HARDWOOD GIRDLES SHOULD BE WERE CONSTRUCTED WITH 1.8m BATTENS CLOSELY SPACED AND ARRANGED VERTICALLY FROM GROUND LEVEL, GIRDLES MUST BE WERE STRAPPED TO TREES PRIOR TO CONSTRUCTION AND REMAIN REMAINED TO COMPLETION.
- WHERE POSSIBLE, TREE ROOTS SHOULD BE WERE TUNNELLED UNDER, RATHER THAN SEVERED. IF ROOTS ARE WERE SEVERED, THE DAMAGED AREA SHOULD BE WAS TREATED WITH A SUITABLE FUNGICIDE, CONTACTED COUNCIL ARBORIST FOR FURTHER ADVICE.
- ANY TREE LOPPING REQUIRED SHOULD BE WAS UNDERTAKEN BY AN APPROVED ARBORIST.
- TOPSOIL AND SUBSOIL SHOULD BE WAS STOCKPILED SEPARATELY.
- CARE SHOULD BE WAS TAKEN TO PREVENT SEDIMENT FROM ENTERING THE STORMWATER SYSTEM. THIS MAY INVOLVE HAVE INVOLVED PLACING APPROPRIATE SEDIMENT CONTROLS AROUND
- CREEK CROSSINGS A. SILTATION CONTROL MEASURES SHOULD BE WERE PLACED DOWNSTREAM OF ANY EXCAVATION WORKS.
- APPROPRIATE SEDIMENT CONTROLS SHOULD BE WERE USED TO PREVENT SEDIMENT FROM ENTERING THE CREEK.
- C. NO SOIL SHOULD BE WAS STOCKPILED WITHIN 5m OF THE CREEK.

REHABILITATION

- PREDISTURBANCE SOIL PROFILES AND COMPACTION LEVELS ARE TO BE WERE REINSTATED.
- B. PREDISTURBANCE VEGETATION PATTERNS SHOULD BE WERE RESTORED.

TYPICAL WATER SERVICE AND CONDUIT DETAIL

(REFER S.E.Q. (UNITYWATER) STD. DRG. WAT-1108-1 TO 1108-3) SCALE: N.T.S.

(* The original issue or last amendment of this drawing contained the original signature.)

ALL ENVIRONMENTAL PROTECTION

CONSTRUCTION WORK, INCLUDING

MEASURES SHALL BE WERE

IMPLEMENTED PRIOR TO ANY

CLEARING COMMENCING.

ALL CONSTRUCTION WORK UNDERTAKEN

BY THE CONTRACTOR SHALL COMPLY

OMPLIED WITH ALL APPLICABLE

WORKPLACE HEALTH AND SAFETY

LEGISLATION.

EVISION	DATE	ISSUE DETAILS	DRAWN	DESIGN	DRAWN CHECK	STATUS
A	24,01,20	ISSUED FOR CONSTRUCTION	GT	CR	1	AS CONSTRUCTED
В	08.05.20	AS CONSTRUCTED	EG	CR	1	ACCONOTICOTED
						APPROVED
						DANIEL COLLINS RPEQ 18631 *DANIEL COLLINS FOR & ON BEHALF OF CALIBRE CONSULTING (QLD) PTY LTD
					l	
]	
					1	

NOTWITHSTANDING THAT EXISTING SERVICES MAY OR MAY NOT BE SHOWN ON THE JOB DRAWINGS.

NO RESPONSIBILITY IS TAKEN BY THE SUPERINTENDENT OR THE PRINCIPAL FOR THIS INFORMATION

THE CONTRACTOR SHALL ASCERTAIN THE POSITION OF ANY UNDERGROUND SERVICES IN THIS AREA

WHICH HAS BEEN SUPPLIED BY OTHERS. THE DETAILS ARE PROVIDED FOR INFORMATION ONLY.

AND SHALL BE RESPONSIBLE FOR MAKING GOOD ANY DAMAGE THERETO.

RIVERBANK ESTATE STAGE 19B

WATER RETICULATION **COVER SHEET**


UW REF No. 2017011039s19B

SCLAINER LL DIMENSIONS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO DISTRUCTION, USE WRITTEN DIMENSIONS ONLY, DO NOT SCALE.

17-002277.4

600

В

C