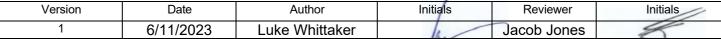


Level 1 Report AS3798


Client: CCA Winslow

Project: Riverbank Estate Stage 2B

Job No. J23/19 Docket No. 49448

Consulting Engineer: Calibre PEET

Contents

1.0 Introduction	2
2.0 Site Description	2
3.0 Foundation Preparation	2
3.1 Site Stripping	2
3.2 Proof Rolling	2
4.0 Controlled Filling	2
5.0 Compaction Control Testing	2
6.0 Field Density Results	3
7.0 Report on Filling Operations	3
8.0 Notes	3
9.0 Constraints	3
Appendix 1: General Layout Plan	5
Appendix 2: Field Density Reports	6
Appendix 3: Typical Site Conditions	7
Appendix 4: Site Information	8

1.0 Introduction

Wagner Soil Testing has recently completed a Level One Overview of Earthworks, in accordance with the requirements of AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments" for Riverbank Estate Stage 2B, Caboolture South.

Controlled fill (as defined in AS 2870) was placed by CCA Winslow Stripping instructions, proof rolling, and compaction control testing was carried out by Wagner Soil Testing (on a fulltime basis) during all earthwork's operations. Our onsite supervision component excludes assessments of fill quality and engineering properties that are outside the requirements of AS3798 – 2007, including CBR values and soil reactivity.

2.0 Site Description

The site is located at Suter Drive, Caboolture South Qld 4510. The general location of the site is shown in the attached site plans (Appendix 1). The site is bound by existing residential developments.

2.0 Foundation Preparation

3.1 Site Stripping

Vegetation, topsoil, and organic rich materials were stripped and stockpiled onsite prior to the commencement of filling operations. As a safety factor several test pits were excavated in the proposed fill area to assess subsurface conditions & no significant issues were noted during this phase.

3.2 Proof Rolling

All stripped areas were proof rolled prior to any fill placement. Any compressible areas with apparent movement were excavated to a firm base before any fill being placed.

4.0 Controlled Filling

Fill materials (on-site / import) were compacted using a medium sized pad foot roller in layers not exceeding 0.3m loose. The natural ground in the areas of filling generally comprised of Silty Sandy Clay (CL - CH). The fill material used was generally as above. Moisture contents of all fill material placed was monitored by Wagner Soil Testing. Total volumes of fill reached 26,854m³.

5.0 Compaction Control Testing

Compaction Control Testing was carried out by Wagner Soil Testing. Testing was carried out in accordance with the requirements of AS3798 Table 5.1 (Minimum Relative Compaction) and Table 8.1 (Frequency of Field Density Tests). During the works, sixty-seven (67) Field Dry Densities were carried out on fill materials together with Dynamic Cone Penetrometers (DCP's) over the filled zones periodically & at the completion of earthworks operations to help quantify bearing capacities.

6.0 Field Density Results

All Nuclear Field Densities carried out on the fill indicated Density Ratios greater than the specified requirement of 95% (standard compaction) & AS3798 Table 5.1.

7.0 Report on Filling Operations

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

8.0 Notes

Certified / Controlled (Level 1) Fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition, and unfavourable site classifications and low subgrade design strengths still may be encountered.

All compacted fill is subject to secondary (creep) settlement, which is relational to the depth of the fill. Estimated secondary settlement may be of the order of 1% to 2% of the total fill height over 15 years. There is a possibility that additional fill has been placed after the date of the last field density test or at times when Wagner Soil Testing has not been notified that filling operations are in progress. The installation of services may cause disruption of the compacted fill.

Unless otherwise stated, Level 1 Certification does not address trench backfill operations, batter slope stability, retaining wall backfill, global stability analysis, acid sulfate testing and or management. The "supervision" component of this Level 1 Report is not NATA endorsed. Wagner Soil Testing must be contacted if any site levels are modified whatsoever. It is the client's responsibility to maintain site drainage after the issue of this report.

A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing.

9.0 Constraints

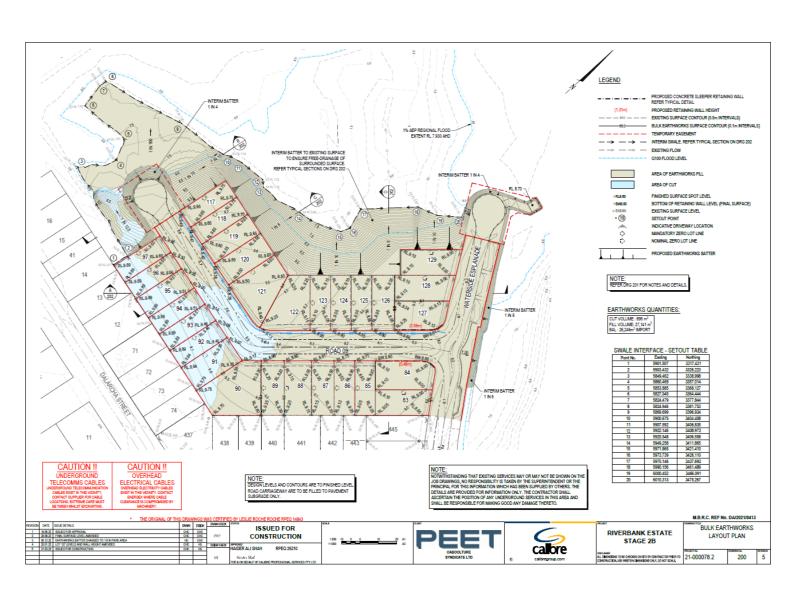
This report was produced for the sole use of CCA Winslow. This report should not be used by or depended upon for other projects or purposes on the same or other projects or by a third party. In the preparation of this report Wagner Soil Testing has relied upon information provided by the client and or their agents.

The results provided in this report are indicative of the subsurface conditions on the site only at the specific sampling or testing locations, and then only to the depths investigated along with the time the work was carried out. It is known that subsurface conditions can suddenly change due to irregular geological processes and as a result of human influences. Such changes may occur after Wagner Soil Testing's field testing has been completed.

Certain ground conditions and the materials' behaviour observed or contained at the test locations may alter from those which may be encountered elsewhere on the site. Should variations in subsurface conditions be encountered, then additional advice should be sought from Wagner Soil Testing and if required, amendments made.

Wagner Soil Testing cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome, or conclusion given in this report.

To establish a geotechnical model as per AS1726-2017-5.2 we require extra testing. No differential settlement estimates have been calculated for this site.


For further technical support regarding this Geotechnical Report please contact Mr. Dean Wagner of Wagner Soil Testing.

AH

Dean Wagner
Managing Director
Wagner Soil Testing

Appendix 1: General Layout Plan

Appendix 2: Field Density Reports

Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au

Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

	CCA Winslow				Job No:	J23/19
	1587 Ipswich Road, Roo	cklea Qld 4	106		Date:	25-May-23
	Riverbank Estate - Stage 2B				Tested by:	LW
	Caboolture South, Qld			Checked:	JJ	
Report Number:	7	Page	1	of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	.1.1	
Sample Method	Earthworks Layer (Compact) AS 1289 1	.2.1 (6.4(b))
Lab Number	RB2B/7	Rb2B/8	RB2B/9
Test Location	Location 1	Location 2	Location 3
See Attached Plan	1st Lift	2nd Lift	3rd Lift
Layer / Elevation	Embankment Fill	Embankment Fill	Embankment Fill
Material Source	Onsite	Onsite	Onsite
Depth Tested	200	200	200
Layer Thickness	200	200	200
Date Tested	25-May-23	25-May-23	25-May-23
Material Sampled	After Compaction	After Compaction	After Compaction
Test Results			
Insitu Wet Density (t/m³)	1.91	1.87	1.90
Insitu Moisture Content (%)	N/A	N/A	N/A
PCWD (t/m ³)	1.96	1.94	1.92
Peak Added Moisture (%)	+2.1	+1.5	+1.5
Moisture Correction (%)	+2.4	+1.8	+1.8
G.			
Retaining Seive (mm)	19.0	19.0	19.0
Percentage Oversize (wet)	0.0	0.0	0.0
HILF DENSITY RATIO (%) MOISTURE VARIATION (%)	97.5	96.0	99.0
Compaction Type	Standard	Standard	Standard
Degree of Compaction	95%	95%	95%
Remarks			
		Docket # 47169	I
	. 1		

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Date 5/06/2023

> Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

	CCA Winslow				Job No:	J23/19
Client Address:	1587 Ipswich Road, Ro	cklea Qld 4	106		Date:	25-May-23
Project:	Riverbank Estate - Stage 2B				Tested by:	LW
Location:	Caboolture South, Qld			Checked:	JJ	
Report Number:	8	Page	1	of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	11		
Sample Method	Earthworks Layer (.2.1 (6.4(b))	
Lab Number	RB2B/10	Rb2B/11	RB2B/12	
Test Location	Location 4	Location 5	Location 6	
See Attached Plan	1st Lift	2nd Lift	3rd Lift	
Layer / Elevation	Embankment Fill	Embankment Fill	Embankment Fill	
Material Source	Onsite	Onsite	Onsite	
Depth Tested	200	200	200	
Layer Thickness	200	200	200	
Date Tested	25-May-23	25-May-23	25-May-23	
Material Sampled	After Compaction	After Compaction	After Compaction	
Test Results				
Insitu Wet Density (t/m³)	1.90	1.88	1.89	
Insitu Moisture Content (%)	N/A	N/A	N/A	
PCWD (t/m³)	1.95	1.95	1.94	
Peak Added Moisture (%)	+0.7	+0.1	+2.0	
Moisture Correction (%)	+0.8	+0.1	+2.3	
Retaining Seive (mm)	19.0	19.0	19.0	
Percentage Oversize (wet)	0.0	0.0	0.0	
HILF DENSITY RATIO (%)	97.5	96.5	98.0	
MOISTURE VARIATION (%)				
Compaction Type	Standard	Standard	Standard	
Degree of Compaction	95%	95%	95%	
Remarks		Docket # 47169		
		DOCKEL # 47 169		

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Date 5/06/2023

Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

Client:	CCA Winslow			Job No:	J23/19
Client Address:	1587 Ipswich Road, Roo	cklea Qld 4	1106	Date:	26-May-23
Project:	Riverbank Estate - Stag	Tested by:	TAS		
Location:	Caboolture South, Qld			Checked:	JL
Report Number:	9	Page	1 of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	.1.1	
Sample Method	Earthworks Layer (.2.1 (6.4(b))
Lab Number	RB2B/13	RB2B/14	RB2B/15
Test Location	Lot 129	Lot 128	Lot 127
	Back	Front	Front
	0.6m Below FL	0.6m Below FL	0.6m Below FL
Layer / Elevation	Allotment Fill	Allotment Fill	Allotment Fill
Material Source	Onsite	Onsite	Onsite
Depth Tested	200	200	200
Layer Thickness	200	200	200
Date Tested	26-May-23	26-May-23	26-May-23
Material Sampled	After Compaction	After Compaction	After Compaction
Test Results			
Insitu Wet Density (t/m³)	2.01	2.08	2.04
Insitu Moisture Content (%)	N/A	N/A	N/A
PCWD (t/m³)	2.04	2.09	2.04
Peak Added Moisture (%)	+0.9	+0.8	+2.1
Moisture Correction (%)	+1.0	+0.9	+2.4
Retaining Seive (mm)	19.0	19.0	19.0
Percentage Oversize (wet)	0.0	0.0	0.0
- Torontago overeizo (wet)	0.0	0.0	0.0
HILF DENSITY RATIO (%)	98.5	99.5	100.5
MOISTURE VARIATION (%)			
Compaction Type	Standard	Standard	Standard
Degree of Compaction	95%	95%	95%
Remarks	90 /0	3370	35 70
remand		Docket #47219	
5			

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au **Web:** www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

	CCA Winslow			Job No:	J23/19
Client Address:	1587 Ipswich Road, Ro	cklea Qld 4	4106	Date:	26-May-23
	Riverbank Estate - Stage 2B			Tested by	TAS
Location:	Caboolture South, Qld			Checked:	JL
Report Number:	10	Page	1 of 1	Order No:	Adrian

9 5.8.1/5.7.1/5 nworks Layer (6 Lot 126 Front n Below FL otment Fill Onsite 200 200 6-May-23 Compaction 2.07 N/A 2.05 +2.2 +2.5	1000 M	1.2.1 (6.4(b)) RB2B/18			
Lot 126 Front m Below FL otment Fill Onsite 200 200 6-May-23 Compaction 2.07 N/A 2.05 +2.2	RB2B/17 Lot 126 Back 0.6m Below FL Allotment Fill Onsite 200 200 26-May-23 After Compaction 2.05 N/A 2.06 +1.8	RB2B/18 Lot 125 Back 0.6m Below FL Allotment Fill Onsite 200 26-May-23 After Compaction 2.08 N/A 2.09 +1.1			
Front m Below FL otment Fill Onsite 200 200 6-May-23 Compaction 2.07 N/A 2.05 +2.2	Back 0.6m Below FL Allotment Fill Onsite 200 200 26-May-23 After Compaction 2.05 N/A 2.06 +1.8	Lot 125 Back 0.6m Below FL Allotment Fill Onsite 200 200 26-May-23 After Compaction 2.08 N/A 2.09 +1.1			
n Below FL otment Fill Onsite 200 200 6-May-23 Compaction 2.07 N/A 2.05 +2.2	0.6m Below FL Allotment Fill Onsite 200 200 26-May-23 After Compaction 2.05 N/A 2.06 +1.8	Back 0.6m Below FL Allotment Fill Onsite 200 200 26-May-23 After Compaction 2.08 N/A 2.09 +1.1			
Onsite 200 200 3-May-23 Compaction 2.07 N/A 2.05 +2.2	Allotment Fill Onsite 200 200 26-May-23 After Compaction 2.05 N/A 2.06 +1.8	Allotment Fill Onsite 200 200 26-May-23 After Compaction 2.08 N/A 2.09 +1.1			
Onsite 200 200 6-May-23 Compaction 2.07 N/A 2.05 +2.2	Onsite 200 200 26-May-23 After Compaction 2.05 N/A 2.06 +1.8	Onsite 200 200 26-May-23 After Compaction 2.08 N/A 2.09 +1.1			
200 200 6-May-23 Compaction 2.07 N/A 2.05 +2.2	200 200 26-May-23 After Compaction 2.05 N/A 2.06 +1.8	Onsite 200 200 26-May-23 After Compaction 2.08 N/A 2.09 +1.1			
200 6-May-23 Compaction 2.07 N/A 2.05 +2.2	200 26-May-23 After Compaction 2.05 N/A 2.06 +1.8	200 26-May-23 After Compaction 2.08 N/A 2.09 +1.1			
2.07 N/A 2.05 +2.2	26-May-23 After Compaction 2.05 N/A 2.06 +1.8	26-May-23 After Compaction 2.08 N/A 2.09 +1.1			
2.07 N/A 2.05 +2.2	2.05 N/A 2.06 +1.8	2.08 N/A 2.09 +1.1			
2.07 N/A 2.05 +2.2	2.05 N/A 2.06 +1.8	2.08 N/A 2.09 +1.1			
N/A 2.05 +2.2	N/A 2.06 +1.8	N/A 2.09 +1.1			
N/A 2.05 +2.2	N/A 2.06 +1.8	N/A 2.09 +1.1			
N/A 2.05 +2.2	N/A 2.06 +1.8	N/A 2.09 +1.1			
2.05 +2.2	2.06 +1.8	2.09 +1.1			
+2.2	+1.8	+1.1			
		+1.3			
19.0	19.0	19.0			
0.0	0.0	0.0			
0.0	0.0	0.0			
101.0	99.5	99.0			
	Standard	Standard			
95%	95%	95%			
		Docket #47219			
	Docket #47219				
1001	Standard 95%	\$1000000000000000000000000000000000000			

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au **Web:** www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

(E. 17.1 E. 17	CCA Winslow			Job No:	J23/19
Client Address:	1587 Ipswich Road, Roo	cklea Qld 4	4106	Date:	26-May-23
	Riverbank Estate - Stage 2B			Tested by:	TAS
Location:	Caboolture South, Qld			Checked:	JL
Report Number:	11	Page	1 of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	.1.1		
Sample Method	Earthworks Layer (S 10000 N	.2.1 (6.4(b))	
Lab Number	RB2B/19	RB2B/20	RB2B/21	
Test Location	Lot 124	Lot 123	Lot 122	
	Front	Front	Front	
	0.6m Below FL	0.6m Below FL	0.6m Below FL	
Layer / Elevation	Allotment Fill	Allotment Fill	Allotment Fill	
Material Source	Onsite	Onsite	Onsite	
Depth Tested	200	200	200	
Layer Thickness	200	200	200	
Date Tested	26-May-23	26-May-23	26-May-23	
Material Sampled	After Compaction	After Compaction	After Compaction	
Test Results				
Insitu Wet Density (t/m³)	2.08	2.08	2.09	
Insitu Moisture Content (%)	N/A	N/A	N/A	
PCWD (t/m³)	2.10	2.10	2.08	
Peak Added Moisture (%)	+0.9	+1.4	+2.0	
Moisture Correction (%)	+1.0	+1.6	+2.2	
Retaining Seive (mm)	19.0	19.0	19.0	
Percentage Oversize (wet)	0.0	0.0	0.0	
			×	
HILF DENSITY RATIO (%) MOISTURE VARIATION (%)	99.0	99.5	100.5	
Composition Tune	Oten dend			
Compaction Type	Standard	Standard	Standard	
Degree of Compaction Remarks	95%	95%	95%	
remarks		Docket #47219		

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au **Web:** www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

Client:	CCA Winslow			Job No:	J23/19
Client Address:	1587 Ipswich Road, Ro	ocklea Qld 4	1106	Date:	26-May-23
Project:	Riverbank Estate - Stage 2B				y: TAS
Location:	Caboolture South, Qld			Checked	l: JL
Report Number:	12	Page	1 of 1	Order No	C: Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5.1.1				
Sample Method	Earthworks Layer (.2.1 (6.4(b))		
Lab Number	RB2B/22	RB2B/23	RB2B/24		
Test Location	Lot 121	Lot 120	Lot 120		
	Front	Front	Back		
	0.6m Below FL	0.6m Below FL	0.6m Below FL		
Layer / Elevation	Allotment Fill	Allotment Fill	Allotment Fill		
Material Source	Onsite	Onsite	Onsite		
Depth Tested	200	200	200		
Layer Thickness	200	200	200		
Date Tested	26-May-23	26-May-23	26-May-23		
Material Sampled	After Compaction	After Compaction	After Compaction		
Test Results					
Insitu Wet Density (t/m³)	2.13	2.11	2.05		
Insitu Moisture Content (%)	N/A	N/A	N/A		
PCWD (t/m³)	2.12	2.13	2.09		
Peak Added Moisture (%)	+0.1	+0.4	+2.1		
Moisture Correction (%)	+0.1	+0.4	+2.3		
Retaining Seive (mm)	19.0	19.0	19.0		
Percentage Oversize (wet)	0.0	0.0	0.0		
HILF DENSITY RATIO (%)	100.5	99.0	98.0		
MOISTURE VARIATION (%)	100.3	39.0	30.0		
Compaction Type	Standard	Standard	Standard		
Degree of Compaction	95%	95%	95%		
Remarks	3070	3070	J 3070		
TOTALINO	Docket #47219				

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au
Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

Client:	CCA Winslow			Job No:	J23/19
Client Address:	1587 Ipswich Road, Rocklea Qld 4106			Date:	26-May-23
Project:	Riverbank Estate - Stag	Riverbank Estate - Stage 2B			TAS
Location:	Caboolture South, Qld	aboolture South, Qld			JL
Report Number:	13	Page	1 of 1	Order No:	Adrian

AS 1289 5.8.1/5.7.1/5.1.1				
		.2.1 (6.4(b))		
RB2B/25	RB2B/26			
Lot 119	Lot 118			
Front	Front			
0.6m Below FL	0.6m Below FL			
Allotment Fill	Allotment Fill			
Onsite	Onsite			
200	200			
200	200			
26-May-23	26-May-23			
After Compaction	After Compaction			
2.09	2.03			
	NO. OF THE PARTY O			
+1.8	+2.1			
10.0	10.0			
0.0	0.0			
		_		
99.5	98.0			
Standard	Standard			
95%	95%			
	Docket #47219			
	RB2B/25 Lot 119 Front 0.6m Below FL Allotment Fill Onsite 200 26-May-23 After Compaction 2.09 N/A 2.10 +1.6 +1.8 19.0 0.0 99.5	RB2B/25		

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au **Web:** www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

(E. 11 (E. 1141)	CCA Winslow			Job No:	J23/19
Client Address:	1587 Ipswich Road, Rocklea Q	Date:	23-May-23		
Project:	Riverbank Estate - Stage 2B			Tested by:	TAS
Location:	Caboolture South, Qld	Caboolture South, Qld			JL
Report Number:	14 Page		1 of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5.1.1				
Sample Method	Earthworks Layer (0	Compact) AS 1289 1	.2.1 (6.4(b))		
Lab Number	RB2B/27	RB2B/28	RB2B/29		
Test Location	Adj Lot 117	Adj Lot 118	Adj Lot 119		
	2nd Lift	2nd Lift	2nd Lift		
	Batter	Batter	Batter		
Layer / Elevation	Embankment Fill	Embankment Fill	Embankment Fill		
Material Source	Onsite	Onsite	Onsite		
Depth Tested	200	200	200		
Layer Thickness	200	200	200		
Date Tested	23-May-23	23-May-23	23-May-23		
Material Sampled	After Compaction	After Compaction	After Compaction		
Test Results					
Insitu Wet Density (t/m³)	2.04	2.05	2.06		
Insitu Moisture Content (%)	N/A	N/A	N/A		
PCWD (t/m³)	2.12	2.09	2.12		
Peak Added Moisture (%)	+1.1	+2.6	+2.4		
Moisture Correction (%)	+1.2	+2.9	+2.6		
Retaining Seive (mm)	19.0	19.0	19.0		
Percentage Oversize (wet)	0.0	0.0	0.0		
HILF DENSITY RATIO (%) MOISTURE VARIATION (%)	96.5	98.0	97.0		
Compaction Type	Standard	Standard	Standard		
Degree of Compaction	95%	95%	95%		
Remarks					
	Docket #47215				
	. 1				

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

> Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au **Web:** www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

	CCA Winslow				Job No:	J23/19
Client Address:	587 Ipswich Road, Rocklea Qld 4106			Date:	23-May-23	
	Riverbank Estate - Stag	Riverbank Estate - Stage 2B			Tested by:	TAS
Location:	Caboolture South, Qld	aboolture South, Qld			Checked:	JL
Report Number:	15	Page	,	1 of 1	Order No:	Adrian

Test Methods					
Sample Method	Earthworks Layer (0	Compact) AS 1289 1	.2.1 (6.4(b))		
Lab Number	RB2B/30	RB2B/31	RB2B/32		
Test Location	Adj Lot 120	Adj Lot 121	Adj Lot 122		
	2nd Lift	2nd Lift	2nd Lift		
	Batter	Batter	Batter		
Layer / Elevation	Embankment Fill	Embankment Fill	Embankment Fill		
Material Source	Onsite	Onsite	Onsite		
Depth Tested	200	200	200		
Layer Thickness	200	200	200		
Date Tested	23-May-23	23-May-23	23-May-23		
Material Sampled	After Compaction	After Compaction	After Compaction		
Test Results					
Insitu Wet Density (t/m³)	2.04	2.09	2.10		
Insitu Moisture Content (%)	N/A	N/A	N/A		
PCWD (t/m³)	2.09	2.11	2.13		
Peak Added Moisture (%)	+2.0	+3.4	+1.1		
Moisture Correction (%)	+2.2	+3.7	+1.2		
Retaining Seive (mm)	19.0	19.0	19.0		
Percentage Oversize (wet)	0.0	0.0	0.0		
HILF DENSITY RATIO (%)	97.5	99.0	98.5		
MOISTURE VARIATION (%)	31.0	95.0	90.3		
Compaction Type	Chardend	Otan			
Degree of Compaction	Standard 95%	Standard	Standard		
Remarks	95%	95%	95%		
I GHAINS	Docket #47215				

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au **Web:** www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

Client:	CCA Winslow			Job No:	J23/19
Client Address:	1587 Ipswich Road, Rocklea Qld 4106			Date:	23-May-23
Project:	Riverbank Estate - Stage 2B			Tested by:	TAS
Location:	Caboolture South, Qld	Caboolture South, Qld			JL
Report Number:	16	Page	1 of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5.1.1				
Sample Method	Earthworks Layer (0	Compact) AS 1289 1	.2.1 (6.4(b))		
Lab Number	RB2B/33	RB2B/34	RB2B/35		
Test Location	Adj Lot 123	Adj Lot 124	Adj Lot 125		
	2nd Lift	2nd Lift	2nd Lift		
	Batter	Batter	Batter		
Layer / Elevation	Embankment Fill	Embankment Fill	Embankment Fill		
Material Source	Onsite	Onsite	Onsite		
Depth Tested	200	200	200		
Layer Thickness	200	200	200		
Date Tested	23-May-23	23-May-23	23-May-23		
Material Sampled	After Compaction	After Compaction	After Compaction		
Test Results					
Insitu Wet Density (t/m³)	2.03	2.06	2.07		
Insitu Moisture Content (%)	N/A	N/A	N/A		
PCWD (t/m ³)	2.10	2.08	2.08		
Peak Added Moisture (%)	+2.5	+3.0	+1.3		
Moisture Correction (%)	+2.8	+3.3	+1.5		
Retaining Seive (mm)	19.0	19.0	19.0		
Percentage Oversize (wet)	0.0	0.0	0.0		
HILF DENSITY RATIO (%)	97.0	99.0	99.5		
MOISTURE VARIATION (%)	57.0	99.0	99.5		
Compaction Type	Standard	Standard	Standard		
Degree of Compaction	95%	Standard 95%	Standard 95%		
Remarks	3070	J 90%	95%		
INCITIALINS	Docket #47215				

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

Client:	CCA Winslow			Job No:	J23/19	
Client Address:	587 Ipswich Road, Rocklea Qld 4106			Date:	22-May-23	
Project:	Riverbank Estate - Stag	Riverbank Estate - Stage 2B			Tested by:	TAS
Location:	Caboolture South, Qld				Checked:	JL
Report Number:	17	Page	1 c	of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5.1.1				
Sample Method	Earthworks Layer (Compact) AS 1289 1	.2.1 (6.4(b))		
Lab Number	RB2B/36	RB2B/37	RB2B/38		
Test Location	Lot 117	Lot 120	Lot 122		
	Front	Front	Back		
	0.8m Below FL	0.8m Below FL	0.8m Below FL		
Layer / Elevation	Allotment Fill	Allotment Fill	Allotment Fill		
Material Source	Onsite	Onsite	Onsite		
Depth Tested	200	200	200		
Layer Thickness	200	200	200		
Date Tested	22-May-23	22-May-23	22-May-23		
Material Sampled	After Compaction	After Compaction	After Compaction		
Test Results					
Insitu Wet Density (t/m³)	2.03	2.03	2.02		
Insitu Wet Bensity (VIII) Insitu Moisture Content (%)	N/A	N/A	N/A		
PCWD (t/m ³)	2.06	2.09	2.04		
Peak Added Moisture (%)	+1.6	+1.0			
Moisture Correction (%)	+1.8	+1.0	+1.6 +1.8		
Microstate Correction (70)	11.0	71.1	71.0		
Retaining Seive (mm)	19.0	19.0	19.0		
Percentage Oversize (wet)	0.0	0.0	0.0		
HILF DENSITY RATIO (%)	99.0	97.0	99.0		
MOISTURE VARIATION (%)					
Compaction Type	Standard	Standard	Standard		
Degree of Compaction	95%	95%	95%		
Remarks					
	Docket #47209				
	1				

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

> Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au **Web:** www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

	CCA Winslow			Job No:	J23/19	
	587 Ipswich Road, Rocklea Qld 4106			Date:	22-May-23	
Project:	Riverbank Estate - Stag	Riverbank Estate - Stage 2B			Tested by:	TAS
Location:	Caboolture South, Qld	Caboolture South, Qld			Checked:	JL
Report Number:	18	Page	1	of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	.1.1	
Sample Method	Earthworks Layer (.2.1 (6.4(b))
Lab Number	RB2B/39	RB2B/40	RB2B/41
Test Location	Lot 127	Lot 128	Lot 129
	Back	Back	Front
	0.8m Below FL	0.8m Below FL	0.8m Below FL
Layer / Elevation	Allotment Fill	Allotment Fill	Allotment Fill
Material Source	Onsite	Onsite	Onsite
Depth Tested	200	200	200
Layer Thickness	200	200	200
Date Tested	22-May-23	22-May-23	22-May-23
Material Sampled	After Compaction	After Compaction	After Compaction
Test Results			
Insitu Wet Density (t/m³)	2.10	2.09	2.01
Insitu Moisture Content (%)	N/A	N/A	N/A
PCWD (t/m³)	2.10	2.07	2.06
Peak Added Moisture (%)	+0.1	+1.7	+1.2
Moisture Correction (%)	+0.1	+1.9	+1.4
Retaining Seive (mm)	19.0	19.0	19.0
Percentage Oversize (wet)	0.0	0.0	0.0
HILF DENSITY RATIO (%) MOISTURE VARIATION (%)	100.0	101.0	97.5
Compaction Type	Standard	Standard	Standard
Degree of Compaction	95%	95%	95%
Remarks			
		Docket #47209	
	. 1		

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au **Web:** www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

Client:	CCA Winslow			Job No:	J23/19	
Client Address:	1587 Ipswich Road, Ro				Date:	30-May-23
Project:	Riverbank Estate - Stag	Riverbank Estate - Stage 2B			Tested by:	AL
Location:	Caboolture South, Qld				Checked:	JL
Report Number:	21	Page	1	of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	.1.1	
Sample Method	Earthworks Layer (.2.1 (6.4(b))
Lab Number	RB2B/44	RB2B/45	RB2B/46
Test Location	Lot 117 RL: 7.9	Lot 118 RL: 7.9	Lot 119 RL: 7.9
Batter Rear of	E:495957	E:495954	E:495918
	N:7003394	1111000	
Layer / Elevation	Embankment Fill	Embankment Fill	Embankment Fill
Material Source	Onsite	Onsite	Onsite
Depth Tested	200	200	200
Layer Thickness	200	200	200
Date Tested	30-May-23	30-May-23	30-May-23
Material Sampled	After Compaction	After Compaction	After Compaction
Test Results			
Insitu Wet Density (t/m³)	2.02	2.01	2.19
Insitu Moisture Content (%)	N/A	N/A	N/A
PCWD (t/m ³)	2.09	2.09	2.10
Peak Added Moisture (%)	+2.2	+0.1	+0.2
Moisture Correction (%)	+2.4	+0.1	+0.2
inclotaro correction (70)	12.4	10.1	+0.2
Retaining Seive (mm)	19.0	19.0	19.0
Percentage Oversize (wet)	0.0	0.0	0.0
HILF DENSITY RATIO (%)	96.5	96.0	104.0
MOISTURE VARIATION (%)			
Compaction Type	Standard	Standard	Standard
Degree of Compaction	95%	95%	95%
Remarks	0070	1 5570	J 90 /0
		Docket #47333	
	. 1		

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

> Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

Client:	CCA Winslow	- 2			Job No:	J23/19
Client Address:	1587 Ipswich Road, Ro	87 Ipswich Road, Rocklea Qld 4106			Date:	31-May-23
Project:	Riverbank Estate - Stag	Riverbank Estate - Stage 2B			Tested by:	AL
Location:	Caboolture South, Qld				Checked:	JL
Report Number:	22	Page	1 o	f 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	5.1.1	
Sample Method	Earthworks Layer (.2.1 (6.4(b))
Lab Number	RB2B/47	RB2B/48	RB2B/49
Test Location	Lot 126	Lot 124	Lot 120
	Centre Line Rear	Centre Line Rear	Centre Line
	0.9m Below FL	0.9m Below FL	0.9m Below FL
Layer / Elevation	Allotment Fill	Allotment Fill	Allotment Fill
Material Source	Onsite	Onsite	Onsite
Depth Tested	200	200	200
Layer Thickness	200	200	200
Date Tested	31-May-23	31-May-23	31-May-23
Material Sampled	After Compaction	After Compaction	After Compaction
Test Results			
Insitu Wet Density (t/m³)	2.14	2.13	2.00
Insitu Moisture Content (%)	N/A	N/A	N/A
PCWD (t/m³)	2.17	2.17	2.09
Peak Added Moisture (%)	+2.2	+2.2	+0.3
Moisture Correction (%)	+2.4	+2.4	+0.3
Retaining Seive (mm)	19.0	19.0	19.0
Percentage Oversize (wet)	0.0	0.0	0.0
LIII E DENOITY DATIO (9/)			
HILF DENSITY RATIO (%) MOISTURE VARIATION (%)	98.0	98.0	96.0
O 5 - T			
Compaction Type	Standard	Standard	Standard
Degree of Compaction	95%	95%	95%
Remarks		Docket # 47337	
		Docket # 4/33/	

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Date 5/06/2023

> Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au **Web:** www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

Client:	CCA Winslow			Job No:	J23/19
Client Address:	587 Ipswich Road, Rocklea Qld 4106			Date:	1-Jun-23
Project:	Riverbank Estate - Stage 2B	Riverbank Estate - Stage 2B			AL
Location:	Caboolture South, Qld				JL
Report Number:	23 Page		1 of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	.1.1	
Sample Method	Earthworks Layer (101 ASSES 10	.2.1 (6.4(b))
Lab Number	RB2B/50	RB2B/51	RB2B/52
Test Location	Lot 126	Lot 125	Lot 122
	Centre Line Rear	Centre Line Rear	Centre Line Rear
	0.6m Below FL	0.6m Below FL	0.6m Below FL
Layer / Elevation	Allotment Fill	Allotment Fill	Allotment Fill
Material Source	Onsite	Onsite	Onsite
Depth Tested	200	200	200
Layer Thickness	200	200	200
Date Tested	1-Jun-23	1-Jun-23	1-Jun-23
Material Sampled	After Compaction	After Compaction	After Compaction
Test Results			
Insitu Wet Density (t/m³)	2.13	2.15	2.05
Insitu Moisture Content (%)	N/A	N/A	N/A
PCWD (t/m ³)	2.20	2.20	2.18
Peak Added Moisture (%)	+2.3	+2.3	+2.3
Moisture Correction (%)	+2.5	+2.5	+2.5
Retaining Seive (mm)	19.0	19.0	19.0
Percentage Oversize (wet)	0.0	0.0	0.0
HILF DENSITY RATIO (%)	97.0	97.5	00 5
MOISTURE VARIATION (%)	97.0	97.5	96.5
Compaction Type	Standard	Standard	Standard
Degree of Compaction	95%	95%	95%
Remarks	3070	1 5570	3570
		Docket # 47102	I

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Date 5/06/2023

Office: 07 5496 6715 **Fax:** 07 5496 6717 **ABN:** 49 416 679 791

Email: admin@wagnersoiltesting.com.au Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

	CCA Winslow			Job No:	J23/19	
Client Address:	1587 Ipswich Road, Roo	587 Ipswich Road, Rocklea Qld 4106			Date:	29-May-23
Project:	Riverbank Estate - Stag	Riverbank Estate - Stage 2B			Tested by:	TAS
Location:	Caboolture South, Qld				Checked:	JL
Report Number:	24	Page		1 of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	.1.1	
Sample Method	Earthworks Layer (Compact) AS 1289 1	.2.1 (6.4(b))
Lab Number	RB2B/53	RB2B/54	RB2B/55
Test Location	Lot 119	Lot 122	Lot 126
	Centre Line	Centre Line	Centre Line
	0.6m Below FL	0.6m Below FL	0.4m Below FL
Layer / Elevation	Allotment Fill	Allotment Fill	Allotment Fill
Material Source	Onsite	Onsite	Onsite
Depth Tested	200	200	200
Layer Thickness	200	200	200
Date Tested	29-May-23	29-May-23	29-May-23
Material Sampled	After Compaction	After Compaction	After Compaction
Test Results			
Insitu Wet Density (t/m³)	2.06	2.08	2.09
Insitu Moisture Content (%)	N/A	N/A	N/A
PCWD (t/m³)	2.08	2.08	2.07
Peak Added Moisture (%)	+0.3	+1.7	+0.0
Moisture Correction (%)	+0.3	+1.9	+0.0
Retaining Seive (mm)	19.0	19.0	19.0
Percentage Oversize (wet)	0.0	0.0	0.0
reisentage everenze (wet)	J. J.	0.0	0.0
HILF DENSITY RATIO (%)	99.0	100.0	101.0
MOISTURE VARIATION (%)			
Compaction Type	Standard	Standard	Standard
Degree of Compaction	95%	95%	95%
Remarks			
		Docket #47224	
	1		

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Office: 07 5496 6715 **Fax:** 07 5496 6717

ABN: 49 416 679 791 **Email:** admin@wagnersoiltesting.com.au

Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

	CCA Winslow			Job No:	J23/19	
Client Address:	587 Ipswich Road, Rocklea Qld 4106			Date:	6-Jun-23	
Project:	Riverbank Estate - Stag	Riverbank Estate - Stage 2B			Tested by:	TAS
Location:	Caboolture South, Qld	1 11 0 11 011			Checked:	JL
Report Number:	25	Page	1	of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	.1.1	
Sample Method	Earthworks Layer (Compact) AS 1289 1	.2.1 (6.4(b))
Lab Number	RB2B/56	RB2B/57	RB2B/58
Test Location	West Corner	West Corner	West Corner
	Final Level	10m Right	North of Culdesac
		Final Level	Final Level
Layer / Elevation	Embankment Fill	Embankment Fill	Embankment Fill
Material Source	Onsite	Onsite	Onsite
Depth Tested	200	200	200
Layer Thickness	200	200	200
Date Tested	6-Jun-23	6-Jun-23	6-Jun-23
Material Sampled	After Compaction	After Compaction	After Compaction
Test Results			
Insitu Wet Density (t/m³)	2.08	2.02	2.06
Insitu Moisture Content (%)	N/A	N/A	N/A
PCWD (t/m³)	2.10	2.05	2.07
Peak Added Moisture (%)	+1.9	+2.6	+1.1
Moisture Correction (%)	+2.1	+2.9	+1.2
Retaining Seive (mm)	19.0	19.0	19.0
Percentage Oversize (wet)	0.0	0.0	0.0
HILF DENSITY RATIO (%) MOISTURE VARIATION (%)	99.0	98.5	99.5
Compaction Type	Standard	Standard	Standard
Degree of Compaction	98%	98%	98%
Remarks	30 /0	J 90 /0	9070
		Docket #46297	

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

> Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

Client:	CCA Winslow			Job No:	J23/19
Client Address:	1587 Ipswich Road, Roc	587 Ipswich Road, Rocklea Qld 4106			6-Jun-23
Project:	Riverbank Estate - Stage	Riverbank Estate - Stage 2B			TAS
Location:	Caboolture South, Qld			Checked:	JL
Report Number:	26	Page	1 of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	.1.1	
Sample Method	Earthworks Layer (0		.2.1 (6.4(b))
Lab Number	RB2B/59	RB2B/60	RB2B/61
Test Location	West Corner	Culdesac	Road 9
	South of Culdesac	Road 9	Adjacent Lot 96
	Final Level	Final Level	0.3m Below FL
Layer / Elevation	Embankment Fill	Embankment Fill	Embankment Fill
Material Source	Onsite	Onsite	Onsite
Depth Tested	200	200	200
Layer Thickness	200	200	200
Date Tested	6-Jun-23	6-Jun-23	6-Jun-23
Material Sampled	After Compaction	After Compaction	After Compaction
Test Results			
Insitu Wet Density (t/m³)	2.02	2.08	2.02
Insitu Moisture Content (%)	N/A	N/A	N/A
PCWD (t/m ³)	2.05	2.07	2.03
Peak Added Moisture (%)	+2.6	+2.3	+3.4
Moisture Correction (%)	+2.9	+2.6	+3.8
Retaining Seive (mm)	19.0	19.0	19.0
Percentage Oversize (wet)	0.0	0.0	0.0
r droiniago e voroize (wet)	0.0	0.0	0.0
HILF DENSITY RATIO (%)	99.0	100.0	99.0
MOISTURE VARIATION (%)			
Compaction Type	Standard	Standard	Standard
Degree of Compaction	98%	98%	98%
Remarks			L STATE OF THE STA
		Docket #46297	
	. 1		

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

> Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

	CCA Winslow	CCA Winslow		Job No:	J23/19	
Client Address:	1587 Ipswich Road, Rocklea Qld 4106			Date:	8-Jun-23	
Project:	Riverbank Estate - Stage 2B				Tested by:	TAS
	Caboolture South, Qld				Checked:	JL
Report Number:	27	Page	1	of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5.	1.1	
Sample Method	Earthworks Layer (0	Compact) AS 1289 1	.2.1 (6.4(b))
Lab Number	RB2B/62	RB2B/63	RB2B/64
Test Location	Lot 97	Lot 96	Lot 95
	Front	Front	Front
	Final Level	Final Level	Final Level
Layer / Elevation	Allotment Fill	Allotment Fill	Allotment Fill
Material Source	Onsite	Onsite	Onsite
Depth Tested	200	200	200
Layer Thickness	200	200	200
Date Tested	8-Jun-23	8-Jun-23	8-Jun-23
Material Sampled	After Compaction	After Compaction	After Compaction
Test Results			
Insitu Wet Density (t/m³)	2.08	2.02	2.07
Insitu Moisture Content (%)	N/A	N/A	N/A
PCWD (t/m³)	2.10	2.07	2.06
Peak Added Moisture (%)	+1.0	+3.1	+2.2
Moisture Correction (%)	+1.1	+3.4	+2.5
Retaining Seive (mm)	19.0	19.0	19.0
Percentage Oversize (wet)	0.0	0.0	0.0
HILF DENSITY RATIO (%)	00.0	07.5	400 5
MOISTURE VARIATION (%)	99.0	97.5	100.5
Compaction Type	Standard	Standard	Standard
Degree of Compaction	95%	95%	95%
Remarks			
		Docket #47441	
	, 1,		

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

> Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

Client:	CCA Winslow	CCA Winslow		J23/19
Client Address:	1587 Ipswich Road, Rocklea Qld	587 Ipswich Road, Rocklea Qld 4106		
Project:	Riverbank Estate - Stage 2B	Riverbank Estate - Stage 2B		
Location:	Caboolture South, Qld	Caboolture South, Qld		
Report Number:	28 Page	1 of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	.1.1	
Sample Method	Earthworks Layer (.2.1 (6.4(b))
Lab Number	RB2B/65	RB2B/66	RB2B/67
Test Location	Lot 90	Lot 90	Lot 89
	Rear	Front	Front
	Final Level	Final Level	Final Level
Layer / Elevation	Allotment Fill	Allotment Fill	Allotment Fill
Material Source	Onsite	Onsite	Onsite
Depth Tested	200	200	200
Layer Thickness	200	200	200
Date Tested	8-Jun-23	8-Jun-23	8-Jun-23
Material Sampled	After Compaction	After Compaction	After Compaction
Test Results			
Insitu Wet Density (t/m³)	2.11	2.04	2.03
Insitu Moisture Content (%)	N/A	N/A	N/A
PCWD (t/m³)	2.11	2.07	2.05
Peak Added Moisture (%)	+1.1	+1.7	+1.9
Moisture Correction (%)	+1.2	+1.9	+2.1
Retaining Seive (mm)	19.0	19.0	19.0
Percentage Oversize (wet)	0.0	0.0	0.0
LIII E DENCITY DATIO (9/)	00.5	00.5	
HILF DENSITY RATIO (%) MOISTURE VARIATION (%)	99.5	98.5	99.0
Compaction Type	Standard	Standard	Standard
Degree of Compaction	95%	95%	95%
Remarks	0070	1 0070	3070
3	Docket #47441		

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

	CCA Winslow	CCA Winslow		Job No:	J23/19	
Client Address:	587 Ipswich Road, Rocklea Qld 4106			Date:	8-Jun-23	
Project:	Riverbank Estate - Stage 2B				Tested by:	TAS
Location:	Caboolture South, Qld	Caboolture South, Qld			Checked:	JL
Report Number:	29	29 Page 1 of 1			Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5.	1.1		
Sample Method	Earthworks Layer (0	Compact) AS 1289 1	.2.1 (6.4(b))	
Lab Number	RB2B/68	RB2B/69	RB2B/70	
Test Location	Lot 88	Lot 87	Lot 86	
	Rear	Front	Front	
	Final Level	Final Level	Final Level	
Layer / Elevation	Allotment Fill	Allotment Fill	Allotment Fill	
Material Source	Onsite	Onsite	Onsite	
Depth Tested	200	200	200	
Layer Thickness	200	200	200	
Date Tested	8-Jun-23	8-Jun-23	8-Jun-23	
Material Sampled	After Compaction	After Compaction	After Compaction	
Test Results				
Insitu Wet Density (t/m³)	2.08	2.00	2.12	
Insitu Moisture Content (%)	N/A	N/A	N/A	
PCWD (t/m ³)	2.07	2.07	2.10	
Peak Added Moisture (%)	+2.4	+2.5	+1.5	
Moisture Correction (%)	+2.7	+2.8	+1.7	
Retaining Seive (mm)	19.0	19.0	19.0	
Percentage Oversize (wet)	0.0	0.0	0.0	
LIII E DENCITY DATIO (9/)	400 5			
HILF DENSITY RATIO (%) MOISTURE VARIATION (%)	100.5	96.5	101.0	
Compostion Tun-	Otani	01 : :		
Compaction Type	Standard	Standard	Standard	
Degree of Compaction Remarks	95%	95%	95%	
remarks	Docket #47441			
		DOCKEL #41 44 1		
	. 1			

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

> Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au **Web:** www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

	CCA Winslow		Job No:	J23/19
Client Address:	1587 Ipswich Road, Rocklea Qld	Date:	8-Jun-23	
Project:	Riverbank Estate - Stage 2B		Tested by:	TAS
Location:	Caboolture South, Qld		Checked:	JL
Report Number:	30 Page	1 of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	.1.1	
Sample Method	Earthworks Layer (Compact) AS 1289 1	.2.1 (6.4(b))
Lab Number	RB2B/71	RB2B/72	RB2B/73
Test Location	Road Adj Lot 97	Road Adj Lot 95	Road Adj Lot 88
	0.3m Below FL	0.3m Below FL	0.3m Below FL
Layer / Elevation	Embankment Fill	Embankment Fill	Embankment Fill
Material Source	Onsite	Onsite	Onsite
Depth Tested	200	200	200
Layer Thickness	200	200	200
Date Tested	8-Jun-23	8-Jun-23	8-Jun-23
Material Sampled	After Compaction	After Compaction	After Compaction
Test Results			
Insitu Wet Density (t/m³)	2.01	2.03	2.09
Insitu Moisture Content (%)	N/A	N/A	N/A
PCWD (t/m³)	2.04	2.04	2.07
Peak Added Moisture (%)	+1.6	+1.3	+2.0
Moisture Correction (%)	+1.8	+1.5	+2.2
Retaining Seive (mm)	19.0	19.0	19.0
Percentage Oversize (wet)	0.0	0.0	0.0
HILF DENSITY RATIO (%) MOISTURE VARIATION (%)	98.5	99.0	100.5
MOISTURE VARIATION (%)			
Compaction Type	Standard	Standard	Standard
Degree of Compaction	98%	98%	98%
Remarks		B 1 4 //48 * * *	
		Docket #47441	

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

> Office: 07 5496 6715 Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Web: www.wagnersoiltesting.com.au

REPORT ON FIELD HILF DENSITY - NUCLEAR METER

	CCA Winslow		Job No:	J23/19	
Client Address:	587 Ipswich Road, Rocklea Qld 4106			Date:	8-Jun-23
Project:	Riverbank Estate - Stage 2B		Tested by:	TAS	
Location:	Caboolture South, Qld		Checked:	JL	
Report Number:	31 Page)	1 of 1	Order No:	Adrian

Test Methods	AS 1289 5.8.1/5.7.1/5	.1.1	
Sample Method	Earthworks Layer (0		.2.1 (6.4(b))
Lab Number	RB2B/74	RB2B/75	
Test Location	Road Adj Lot 86	Road Adj Lot 84	
	0.3m Below FL	0.3m Below FL	
Layer / Elevation	Embankment Fill	Embankment Fill	
Material Source	Onsite	Onsite	
Depth Tested	200	200	
Layer Thickness	200	200	
Date Tested	8-Jun-23	8-Jun-23	
Material Sampled	After Compaction	After Compaction	
Test Results			
Insitu Wet Density (t/m³)	2.05	2.00	
Insitu Moisture Content (%)	N/A	N/A	
PCWD (t/m ³)	2.05	2.03	
Peak Added Moisture (%)	+1.9	+3.3	
Moisture Correction (%)	+2.1	+3.7	
			8
Retaining Seive (mm)	19.0	19.0	
Percentage Oversize (wet)	0.0	0.0	
HILF DENSITY RATIO (%)	100.0	99.0	
MOISTURE VARIATION (%)			
Compaction Type	Standard	Standard	
Degree of Compaction	98%	98%	
Remarks			
		Docket #47441	

Authorised Signatory Accreditation No: 15070

Accredited for compliance ISO/IEC 17025 - Testing

Form No: 95

Version: 5

19/10/2021

Appendix 3: Typical Site Conditions

Appendix 4: Site Information

Important Information about your Report

As a client of Wagner Soil Testing Pty Ltd you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been provided to help you interpret and understand the limitations of your report.

Your report is project specific

Your report has been developed based on your unique project specific requirements as understood by Wagner Soil Testing and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structure on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-surface limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Wagner Soil Testing to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Wagner Soil Testing cannot accept responsibility for problems that may occur due to changed factors if they are not consulted. Our report does not take into account any existing filled ground or any other unforeseen subsurface conditions that may change anticipated site classification.

Subsurface conditions can change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. Do not rely on a geotechnical engineering report whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. Always contact Wagner Soil Testing before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners

should retain the services of Wagner Soil Testing through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be Only Wagner Soil Testing, who regarded as preliminary. prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If another party undertakes the implementation of recommendations of this report, there is a risk that the report will be misinterpreted, and Wagner Soil Testing cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Wagner Soil Testing before passing your report on to another party who may not be familiar with the background and purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

It is a requirement that the client contacts Wagner Soil Testing Pty Ltd when the exact position of the proposed building is confirmed so we can check if our Boreholes fall in the footing area [our borelogs are only presumed indicative of the whole area until this is confirmed]. In the case of a cracked house investigation more testing may be required to conclude all possible causes of settlement and or movement. Initial drilling and lab testing may only identify some of the causes of the problem. Wagner Soil Testing should be contacted when additional testing is required. It is company policy that Wagner Soil Testing are contacted if the development (including any portion and/or envelope) is sold and/or changes title as the report is only for the use of our direct client. If the development is sold and/or changes title Wagner Soil Testing must be contacted and subsequently will carry out a comprehensive site inspection – evaluation at no cost to ensure the preliminary report is relevant and no changes whatsoever have been made.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	83
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

Office: 07 5496 6715

Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	84
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

Office: 07 5496 6715

Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	85
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	86
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	87
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	88
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones
Laboratory Manager
Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

Office: 07 5496 6715

Fax: 07 5496 6717 ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	89
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	90
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	91
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	94
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	95
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 — Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	96
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones
Laboratory Manager
Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments - AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	97
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	117
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	118
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones
Laboratory Manager
Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	119
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	120
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments - AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	121
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	122
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones
Laboratory Manager
Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	123
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	124
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	125
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	126
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791 Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	127
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	128
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones Laboratory Manager Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.

> Office: 07 5496 6715 Fax: 07 5496 6717

ABN: 49 416 679 791

Email: admin@wagnersoiltesting.com.au Website: www.wagnersoiltesting.com.au

Lot Level One Certification

Guidelines on Earthworks for Commercial & Residential Developments – AS3798

Project:	Riverbank Stage 2B, Caboolture Qld 4510
Lot No:	129
Job No:	J23/19
Earthworks Contractor:	CCA Winslow
Date:	6/11/2023

The results obtained from Compaction Control Testing, together with observations made during earthworks operations indicate that all fill materials were placed in a controlled manner in accordance with good engineering practices. The earthworks have been carried out to meet the requirements of Level 1 Certification as per AS3798 – "Guidelines on Earthworks for Commercial and Residential Developments".

Jacob Jones
Laboratory Manager
Wagner Soil Testing

Notes:

Certified (Level 1) fill is only an assurance of its density. There are sites where long-term consolidations of fill can occur, unrelated to its actual density. Sites where fill has been placed over inferior material and sites where the depth of controlled fill varies dramatically over short distances are sites where differential consolidations must be considered. Although all Field Densities carried out reached density ratios greater than 95% as required, some material still may have bearing ratios below 100kPa as per AS2870 – Residential Slabs & Footings depending on material composition. Unless otherwise stated, Level 1 Certification does not address any other geotechnical issues which may be relevant to building construction. Trench backfill operations are not covered in this Level 1 Report. Site drainage must be maintained after the issue of this report. Wagner Soil Testing is to be contacted immediately if any site levels are modified whatsoever, especially at the building preparation phase. The "supervision" component of the Level 1 report is not NATA endorsed. A full geotechnical site investigation / classification and foundation design for the specific ground conditions should be carried out by suitably qualified or experienced personnel prior to building. This service can be provided, if required, by contacting Wagner Soil Testing. For further technical support regarding this Geotechnical Report please contact Mr. Jacob Jones of Wagner Soil Testing.